Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionbv2dea33kvmq9ofih3ktje1q5fi4lqmk): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Given a training set of face photo-sketch pairs, face sketch synthesis targets at learning a mapping from the photo domain to the sketch domain. Despite the exciting progresses made in the literature, it retains as an open problem to synthesize high-quality sketches against blurs and deformations. Recent advances in generative adversarial training provide a new insight into face sketch synthesis, from which perspective the existing synthesis pipelines can be fundamentally revisited. In this paper, we present a novel face sketch synthesis method by multidomain adversarial learning (termed MDAL), which overcomes the defects of blurs and deformations toward high-quality synthesis. The principle of our scheme relies on the concept of "interpretation through synthesis." In particular, we first interpret face photographs in the photodomain and face sketches in the sketch domain by reconstructing themselves respectively via adversarial learning. We define the intermediate products in the reconstruction process as latent variables, which form a latent domain. Second, via adversarial learning, we make the distributions of latent variables being indistinguishable between the reconstruction process of the face photograph and that of the face sketch. Finally, given an input face photograph, the latent variable obtained by reconstructing this face photograph is applied for synthesizing the corresponding sketch. Quantitative comparisons to the state-of-the-art methods demonstrate the superiority of the proposed MDAL method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2018.2869574 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!