Target spot, caused by Corynespora cassiicola, has recently emerged as a problematic foliar disease of cotton. This pathogen causes premature defoliation during boll set and maturation that can subsequently impact yield, and on certain cotton cultivars loss can be substantial. This study sought to better understand target spot epidemics and disease-incited yield losses on cotton. In order to establish a range of disease, varying numbers of fungicide applications were made to each of two cotton cultivars in each of four site-years. Target spot intensity was rated over several dates beginning in late July or early August and continuing into September. Yield of seed plus lint (seed cotton) was recorded at harvest. When analyzed across cultivars, a second or third fungicide application increased yield compared with no treatment. Lack of significant yield response with a single fungicide application may have been due to timing of that application which preceded disease onset. The cultivar PhytoGen 499 WRF had consistently greater defoliation than any of the three Deltapine cultivars grown in each site-year. However, yields of both cultivars responded similarly to the fungicide regimes. Yield loss models based on late August defoliation were only predictive at site-years where conditions favored target spot development, i.e., abundant rain and moderate temperatures. Epidemic development fit the Gompertz growth model better than it did a logistic model. Knowledge of the underlying mathematical character of the epidemiology of target spot will prove useful for development of a predictive model for the disease.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-03-18-0382-REDOI Listing

Publication Analysis

Top Keywords

target spot
20
yield losses
8
corynespora cassiicola
8
cotton cultivars
8
fungicide application
8
cotton
6
yield
6
target
5
spot
5
cultivars
5

Similar Publications

Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S.

View Article and Find Full Text PDF

Background: Sphingolipidoses are rare inherited metabolic diseases belonging to lysosomal diseases. Early and accurate diagnosis is crucial for effective management and treatment. In this study, we aimed to develop a robust method to accelerate the diagnosis of these sphingolipidoses using dried blood spots and plasma.

View Article and Find Full Text PDF

Molecular basis of resistance to leaf spot disease in oil palm.

Front Plant Sci

December 2024

School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.

Introduction: Leaf spot disease caused by the fungal pathogen is one of the most common diseases found in oil palm () nurseries in South East Asia, and is most prevalent at the seedling stage. Severe infections result in localized necrotic regions of leaves that rapidly spread within nurseries leading to poor quality seedlings and high economic losses.

Methods: To understand the molecular mechanisms of this plant-pathogen interaction, RNA-Seq was used to elucidate the transcriptomes of three oil palm genotypes with contrasting pathogen responses (G10 and G12, resistant and G14, susceptible) following infection with spores.

View Article and Find Full Text PDF

Mass spectrometry-based investigation of the heterogeneous glycoproteome from complex biological specimens is a robust approach to mapping the structure, function, and dynamics of the glycome and proteome. Sampling whole wet tissues often provides a large amount of starting material; however, there is a reasonable variability in tissue handling prior to downstream processing steps, and it is difficult to capture all the different biomolecules from a specific region. The on-slide tissue digestion approach, outlined in this protocol chapter, is a simple and cost-effective method that allows comprehensive mapping of the glycoproteome from a single spot of tissue of 1 mm or greater diameter.

View Article and Find Full Text PDF

An AI dose-influence matrix engine for robust pencil beam scanning protons therapy.

Med Phys

December 2024

National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.

Background: Rapid planning is of tremendous value in proton pencil beam scanning (PBS) therapy in overcoming range uncertainty. However, the dose calculation of the dose influence matrix (D) in robust PBS plan optimization is time-consuming and requires substantial acceleration to enhance efficiency.

Purpose: To accelerate the D calculations in PBS therapy, we developed an AI-D engine integrated into our in-house treatment planning system (TPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!