Currently dynamic conformal arcs (DCA) and volumetric modulated arc therapy (VMAT) are two popular planning techniques to treat lung stereotactic body radiation therapy (SBRT) patients. Of the two, DCA has advantages in terms of multi-leaf collimator (MLC) motion, positioning error, and delivery efficiency. However, VMAT is often the choice when critical organ sparing becomes important. We developed a hybrid strategy to incorporate DCA component into VMAT planning, results were compared with DCA and VMAT plans. Four planning techniques were retrospectively simulated for 10 lung SBRT patients: DCA, Hybrid-DCA (2/3 of the doses from DCA beams), Hybrid-VMAT (2/3 of the doses from VMAT beams) and VMAT. Plan complexity was accessed by modulation complexity score (MCS). Conformity index (CI) for the planning target volume (PTV), V and V for the lung, V for the chestwall, and maximum dose to all other critical organs were calculated. Plans were compared with regard to these metrics and measured agreement between the planned and delivered doses. DCA technique did not result in acceptable plan quality due to target location for five patients. Hybrid-DCA produced one unacceptable plan, and Hybrid-VMAT and VMAT produced no unacceptable plans. The CI improved with increasing VMAT usage, as did the dose sparing to critical structures. Compared to the VMAT technique, a total MU reduction of 14%, 25% and 37% were found for Hybrid-VMAT, Hybrid-DCA and DCA techniques for 54 Gy patient group, and 9%, 23% and 34% for 50 Gy patient group, suggesting improvement in delivery efficiency with increasing DCA usage. No significant variations of plan complexity were observed between Hybrid-DCA and Hybrid-VMAT (P = 0.46 from Mann-Whitney U-test), but significant differences were found among DCA, Hybrid and VMAT (P < 0.05). Better agreements between the planned and delivered doses were found with more DCA contributions. By adding DCA components to VMAT planning, hybrid technique offers comparable dosimetry to full VMAT, while increasing delivery efficiency and minimizing MLC complexity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6236848PMC
http://dx.doi.org/10.1002/acm2.12450DOI Listing

Publication Analysis

Top Keywords

dca
10
vmat
10
stereotactic body
8
body radiation
8
radiation therapy
8
planning techniques
8
sbrt patients
8
patients dca
8
delivery efficiency
8
2/3 doses
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!