Buccal Fat Pad-Derived Stem Cells in Three-Dimensional Rehabilitation of Large Alveolar Defects: A Report of Two Cases.

J Oral Implantol

4   Dental Research Center, Dentistry Research Institute, Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.

Published: February 2019

This case report seeks to describe efficient clinical application of adipose-derived stem cells (AdSCs) originated from buccal fat pad (BFP) in combination with conventional guided bone regeneration as protected healing space for reconstruction of large alveolar defects after extraction of multiple impacted teeth. The first case was a 19-year-old woman with several impacted teeth in the maxillary and mandibular regions, which could not be forced to erupt and were recommended for surgical extraction by the orthodontist. After this procedure, a large bone defect was created, and this space was filled by AdSC loaded natural bovine bone mineral (NBBM), which was protected with lateral ramus cortical plates, microscrews, and collagen membrane. After 6 months of post-guided bone regeneration, the patient received 6 and 7 implant placements, respectively, in the maxilla and mandible. At 10 months postoperatively, radiographic evaluation revealed thorough survival of implants. The second case was a 22-year-old man with the same complaint and large bony defects created after his teeth were extracted. After 6 months of post-guided bone regeneration, he received 4 dental implants in his maxilla and 7 implants in the mandible. At 48 months postoperatively, radiographs showed complete survival of implants. This approach represented a considerable amount of 3-dimensional bone formation in both cases, which enabled us to use dental implant therapy for rehabilitation of the whole dentition. The application of AdSCs isolated from BFP in combination with NBBM can be considered an efficient treatment for bone regeneration in large alveolar bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1563/aaid-joi-D-17-00215DOI Listing

Publication Analysis

Top Keywords

bone regeneration
16
large alveolar
12
buccal fat
8
stem cells
8
alveolar defects
8
bfp combination
8
bone
8
impacted teeth
8
months post-guided
8
post-guided bone
8

Similar Publications

Recent progress in biopolymer-based electrospun nanofibers and their potential biomedical applications: A review.

Int J Biol Macromol

January 2025

School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:

Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms.

View Article and Find Full Text PDF

Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in the field of biomedical exploration due to their exceptional properties. There is fascinating evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine.

View Article and Find Full Text PDF

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF

Infected alveolar bone defects pose challenging clinical issues due to disrupted intrinsic healing mechanisms. Thus, the employment of advanced biomaterials enabling the modulation of several aspects of bone regeneration is necessary. This study investigated the effect of multi-functional nanoparticles on anti-inflammatory/osteoconductive characteristics and bone repair in the context of inflamed bone abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!