In therapeutic monoclonal antibody (mAb) development, charge heterogeneity of a mAb molecule is often associated with critical quality attributes and is therefore monitored throughout development and during QC release to ensure product and process consistency. Elucidating the cause of each charge variant species is an involved process that often requires offline fractionation by ion exchange chromatography (IEX) followed by mass spectrometry (MS) analysis, largely due to the incompatibility of conventional IEX buffers for direct MS detection. In this study, we have developed a method that combines a generic strong cation exchange (SCX) chromatography step with ultrasensitive online native MS analysis (SCX-MS) optimized for mAb separation and detection. As demonstrated by analyzing mAb molecules with a wide range of pI (isoelectric point) values, the developed method can consistently achieve both high-resolution IEX separation and ultrasensitive MS detection of low-abundance charge variant species. Using this method, we analyzed the charge heterogeneity of NISTmAb reference material 8671 (NISTmAb) at both whole antibody and subdomain levels. In particular, due to the high sensitivity, a nonconsensus Fab glycosylation site, present at a very low level (<0.1%), was directly detected in the NISTmAb sample without any enrichment. The structure and location of this Fab glycosylation was further characterized by peptide mapping analysis. Despite the extensive characterization of NISTmAb material in previous studies, this is the first time that this Fab-glycosylated variant has been identified in the NISTmAb, demonstrating the value of this new method in achieving a more comprehensive characterization of charge heterogeneity for therapeutic mAbs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.8b03773 | DOI Listing |
J Am Chem Soc
December 2024
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.
Carbapenem-resistant (CRE) is an emerging global concern. Specifically, carbapenemase-producing (CP) strains in CRE have recently been found in clinical, environmental, and food samples worldwide, causing many hospitalizations and deaths. Their rapid identification and characterization are paramount in control, management options, and treatment choices.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Tailoring well-defined interfacial structures of heterogeneous metal catalysts has become an effective strategy for identifying the interface relationships and facilitating the reactions involving multiple intermediates. Here, a particle-particle heterostructure catalyst consisting of Pd and copper oxide nanoparticles is designed to achieve high-performance alkaline methanol oxidation electrocatalysis. The strong coupling particle-particle heterostructure catalyst induced a unique interfacial interpenetration effect to improve the interfacial charge redistribution and regulate the -band structure for optimizing the adsorption of CO intermediates on the catalyst.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Advanced Functional Nanomaterials Research Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India.
The development of quasi-solid-state lithium metal batteries (QSSLMBs) is hindered by inadequate interfacial contact, poor wettability between electrodes and quasi-solid-state electrolytes, and significant volume changes during long-term cycling, leading to safety risks and cataclysmic failures. Here, we report an innovative approach to enhance interfacial properties through the construction of QSSLMBs. A multilayer design integrates a microwave-synthesized LiAlTi(PO) (LATP) ceramic electrolyte, which is surface-coated with a lithiophilic conductive ink comprising VS and disulfonated functionalized graphene nanosheets (VS-DSGNS) using a low-cost nail-polish binder.
View Article and Find Full Text PDFLangmuir
December 2024
Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China.
Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!