The Chromosome-centric Human Proteome Project (C-HPP), announced in September 2016, is an initiative to accelerate progress on the detection and characterization of neXtProt PE2,3,4 "missing proteins" (MPs) with a mandate to each chromosome team to find about 50 MPs over 2 years. Here we report major progress toward the neXt-MP50 challenge with 43 newly validated Chr 17 PE1 proteins, of which 25 were based on mass spectrometry, 12 on protein-protein interactions, 3 on a combination of MS and PPI, and 3 with other types of data. Notable among these new PE1 proteins were five keratin-associated proteins, a single olfactory receptor, and five additional membrane-embedded proteins. We evaluate the prospects of finding the remaining 105 MPs coded for on Chr 17, focusing on mass spectrometry and protein-protein interaction approaches. We present a list of 35 prioritized MPs with specific approaches that may be used in further MS and PPI experimental studies. Additionally, we demonstrate how in silico studies can be used to capture individual peptides from major data repositories, documenting one MP that appears to be a strong candidate for PE1. We are close to our goal of finding 50 MPs for Chr 17.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6465108 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.8b00442 | DOI Listing |
J Pers Med
March 2022
Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia.
Within the Human Proteome Project initiative framework for creating functional annotations of uPE1 proteins, the neXt-CP50 Challenge was launched in 2018. In analogy with the missing-protein challenge, each command deciphers the functional features of the proteins in the chromosome-centric mode. However, the neXt-CP50 Challenge is more complicated than the missing-protein challenge: the approaches and methods for solving the problem are clear, but neither the concept of protein function nor specific experimental and/or bioinformatics protocols have been standardized to address it.
View Article and Find Full Text PDFJ Proteome Res
December 2020
Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow 119121, Russia.
One of the main goals of the Chromosome-Centric Human Proteome Project (C-HPP) is detection of "missing proteins" (PE2-PE4). Using the UPS2 (Universal proteomics standard 2) set as a model to simulate the range of protein concentrations in the cell, we have previously shown that 2D fractionation enables the detection of more than 95% of UPS2 proteins in a complex biological mixture. In this study, we propose a novel experimental workflow for protein detection during the analysis of biological samples.
View Article and Find Full Text PDFJ Proteome Res
December 2019
Institute for Systems Biology, 401 Terry Avenue North , Seattle , Washington 98109-5263 , United States.
The Human Proteome Project (HPP) annually reports on progress made throughout the field in credibly identifying and characterizing the complete human protein parts list and making proteomics an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2019-01-11 contains 17 694 proteins with strong protein-level evidence (PE1), compliant with HPP Guidelines for Interpretation of MS Data v2.1; these represent 89% of all 19 823 neXtProt predicted coding genes (all PE1,2,3,4 proteins), up from 17 470 one year earlier.
View Article and Find Full Text PDFJ Proteome Res
December 2018
Department of Computational Medicine and Bioinformatics , University of Michigan, Ann Arbor , Michigan 48109 , United States.
The Chromosome-centric Human Proteome Project (C-HPP), announced in September 2016, is an initiative to accelerate progress on the detection and characterization of neXtProt PE2,3,4 "missing proteins" (MPs) with a mandate to each chromosome team to find about 50 MPs over 2 years. Here we report major progress toward the neXt-MP50 challenge with 43 newly validated Chr 17 PE1 proteins, of which 25 were based on mass spectrometry, 12 on protein-protein interactions, 3 on a combination of MS and PPI, and 3 with other types of data. Notable among these new PE1 proteins were five keratin-associated proteins, a single olfactory receptor, and five additional membrane-embedded proteins.
View Article and Find Full Text PDFThis special issue of JPR celebrates the fifth anniversary of the Chromosome-Centric Human Proteome Project (C-HPP). We present 27 manuscripts in four categories: (i) Metrics of Progress and Resources, (ii) Missing Protein Detection and Validation, (iii) Analytical Methods and Quality Assessment, and (iv) Protein Functions and Disease. We briefly introduce key messages from each paper, mostly from C-HPP teams and some from the Biology and Disease-driven HPP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!