Considering the important role of metal ions including copper ions are playing in human body, a novel single-Trp peptide WDAHSS was designed and synthesized in this study to achieve sensitive detection of copper ions via fluorescence spectroscopy. The intrinsic fluorescence of a tryptophan residue in WDAHSS, which was the only source of the molecular fluorescence, could be easily quenched with copper ions. By comparing fluorescence spectra of WDAHSS with those of tryptophan molecules at different pH values, the quenching mechanism of WDAHSS was explored in detail. Research showed that the histidine in WDAHSS bound copper ions with metal coordination. With participation of peptide bond, a square planar structure was formed. It was a consequent chelation of copper ions that caused the quenching of tryptophan residue. At the same time, this study discussed how pH conditions affected the fluorescence spectra of WDAHSS. Furthermore, association constants of copper ions towards WDAHSS were calculated through fluorescence measurements and fitting analyses. To enhance the anti-jamming ability to pH variation, the amino terminal of WDAHSS was intentionally acetylized, leading to a stable fluorescence emission under physiological pH conditions. Besides, WDAHSS was designed as a special structure to enhance the selectivity and biocompatibility of its sensitive detection of copper ions. Further studies on WDAHSS may help to improve the fluorescence imaging detection in vivo.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!