A solid understanding of the spatial ecology of green turtles () is fundamental to their effective conservation. Yet this species, like many marine migratory species, is challenging to monitor and manage because they utilise a variety of habitats that span wide spatio-temporal scales. To further elucidate the connectivity between green turtle rookeries and foraging populations, we sequenced the mtDNA control region of 278 turtles across three foraging sites from the northern Great Barrier Reef (GBR) spanning more than 330 km: Cockle Bay, Green Island and Low Isles. This was performed with a newly developed assay, which targets a longer fragment of mtDNA than previous studies. We used a mixed stock analysis (MSA), which utilises genetic data to estimate the relative proportion of genetically distinct breeding populations found at a given foraging ground. Haplotype and nucleotide diversity was also assessed. A total of 35 haplotypes were identified across all sites, 13 of which had not been found previously in any rookery. The MSA showed that the northern GBR (nGBR), Coral Sea (CS), southern GBR (sGBR) and New Caledonia (NC) stocks supplied the bulk of the turtles at all three sites, with small contributions from other rookeries in the region. Stock contribution shifted gradually from north to south, although sGBR/CS stock dominated at all three sites. The major change in composition occured between Cockle Bay and Low Isles. Our findings, together with other recent studies in this field, show that stock composition shifts with latitude as a natural progression along a coastal gradient. This phenomenon is likely to be the result of ocean currents influencing both post-hatchling dispersal and subsequent juvenile recruitment to diverse coastal foraging sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166616PMC
http://dx.doi.org/10.7717/peerj.5651DOI Listing

Publication Analysis

Top Keywords

mixed stock
8
stock analysis
8
three foraging
8
foraging populations
8
green turtles
8
great barrier
8
barrier reef
8
turtles three
8
cockle bay
8
low isles
8

Similar Publications

Chronic myelomonocytic leukemia (CMML) is a myelodysplastic/myeloproliferative neoplasm characterized by peripheral blood monocytosis and bone marrow dysplasia. In approximately one-fourth of cases, CMML can demonstrate progression to acute myeloid leukemia (AML), referred to as AML ex CMML. We present a 58-year-old woman with a past medical history of idiopathic thrombocytopenic purpura (ITP) who demonstrated 24% bone marrow blasts on a repeat biopsy obtained two years after being diagnosed with CMML.

View Article and Find Full Text PDF

The snaplage residue presents itself as a potential alternative roughage source in finishing systems, owing to its high fiber concentration which aids in maintaining rumen health. Nevertheless, the performance of animals will hinge on both the allowance and the nutritive value it offers. This study aimed to evaluate different stocking rates of heifers grazing snaplage residue as an exclusive source of fiber on finishing phase performance.

View Article and Find Full Text PDF

Converting multiple hydrophobic aromatic plastic monomers into a single water-soluble substrate to increase bioavailability for the synthesis of polyhydroxyalkanoates by bacteria using batch, fed batch and continuous cultivation.

J Biotechnol

December 2024

School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin D04 N2E5, Ireland; BiOrbic Bioeconomy Research Centre, O'Brien Centre for Science [Science East], University College Dublin, Dublin D04 N2E5, Ireland. Electronic address:

We demonstrate the proof of concept of increasing the bioavailability of carbon substrates, derived from plastic waste, for their conversion to the biodegradable polymer polyhydroxyalkanoate [PHA] by bacteria and test various approaches to PHA accumulation through batch, fed batch and continuous culture. Styrene, ethylbenzene, and toluene are produced from the pyrolysis of mixed plastic waste (Kaminsky, 2021; Miandad et al., 2017), but they are volatile and poorly soluble in water making them difficult to work with in aqueous fermentation systems.

View Article and Find Full Text PDF

Medical image processing has been highlighted as an area where deep-learning-based models have the greatest potential. However, in the medical field, in particular, problems of data availability and privacy are hampering research progress and, thus, rapid implementation in clinical routine. The generation of synthetic data not only ensures privacy but also allows the drawing of new patients with specific characteristics, enabling the development of data-driven models on a much larger scale.

View Article and Find Full Text PDF

Small pelagic fish support profitable fisheries and are important for food security around the world. Yet, their sustainable management can be hindered by the indiscriminate impacts of simultaneous exploitation of fish from multiple distinct biological populations over extended periods of time. The quantification of such impacts is greatly facilitated by recently developed molecular tools-including diagnostic single nucleotide polymorphism (SNP) panels for mixed-stock analysis (MSA)-that can accurately detect the population identity of individual fish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!