The Purpose of the study was to develop a deep residual learning algorithm to screen for glaucoma from fundus photography and measure its diagnostic performance compared to Residents in Ophthalmology. A training dataset consisted of 1,364 color fundus photographs with glaucomatous indications and 1,768 color fundus photographs without glaucomatous features. A testing dataset consisted of 60 eyes of 60 glaucoma patients and 50 eyes of 50 normal subjects. Using the training dataset, a deep learning algorithm known as Deep Residual Learning for Image Recognition (ResNet) was developed to discriminate glaucoma, and its diagnostic accuracy was validated in the testing dataset, using the area under the receiver operating characteristic curve (AROC). The Deep Residual Learning for Image Recognition was constructed using the training dataset and validated using the testing dataset. The presence of glaucoma in the testing dataset was also confirmed by three Residents in Ophthalmology. The deep learning algorithm achieved significantly higher diagnostic performance compared to Residents in Ophthalmology; with ResNet, the AROC from all testing data was 96.5 (95% confidence interval [CI]: 93.5 to 99.6)% while the AROCs obtained by the three Residents were between 72.6% and 91.2%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168579PMC
http://dx.doi.org/10.1038/s41598-018-33013-wDOI Listing

Publication Analysis

Top Keywords

deep residual
16
residual learning
16
learning algorithm
16
testing dataset
16
residents ophthalmology
12
training dataset
12
algorithm screen
8
screen glaucoma
8
glaucoma fundus
8
fundus photography
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!