The intracellular proteome of African swine fever virus.

Sci Rep

Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.

Published: October 2018

African swine fever (ASF) is a viral disease that affects members of the Suidae family such as African bush pigs, warthogs, but also domestic pigs, and wild boar. It is transmitted by direct contact of naïve with infected animals, by soft ticks of the Ornithodoros genus, or indirectly by movement of infected animals, improper disposal of contaminated animal products or other sources related to human activity. The recent spread of ASF into Eastern and Central European countries is currently threatening the European pig industry. The situation is aggravated as to-date no efficient vaccine is available. African swine fever virus (ASFV) is a large enveloped ds DNA-virus encoding at least 150 open reading frames. Many of the deduced gene products have not been described, less functionally characterized. We have analysed ASFV protein expression in three susceptible mammalian cell lines representing a susceptible host (wild boar) and two non-susceptible species (human and green monkey) by mass spectrometry and provide first evidence for the expression of 23 so far uncharacterized ASFV ORFs. Expression levels of several newly identified ASFV proteins were remarkably high indicating importance in the viral replication cycle. Moreover, expression profiles of ASFV proteins in the three cell lines differed markedly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168524PMC
http://dx.doi.org/10.1038/s41598-018-32985-zDOI Listing

Publication Analysis

Top Keywords

african swine
12
swine fever
12
fever virus
8
wild boar
8
infected animals
8
cell lines
8
asfv proteins
8
asfv
5
intracellular proteome
4
african
4

Similar Publications

An update on active and passive surveillance for African swine fever in the Dominican Republic.

Sci Rep

January 2025

Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.

African swine fever (ASF) is a viral, hemorrhagic disease of swine that is reportable to the World Organisation for Animal Health. Since 2007, ASF has been expanding globally and causing severe disruption to the global swine industry. In 2021, ASF was detected in the Dominican Republic, prompting an emergency response from local and international officials.

View Article and Find Full Text PDF

Ferritin nanoparticles significantly enhance the immune response to the African swine fever virus p34 protein.

Int J Pharm

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.. Electronic address:

Background: African swine fever (ASF) is a highly contagious disease, and the core-shell protein p34 is an important antigen that can induce immune responses. The use of ferritin nanoparticles for the orderly and repetitive display of antigens on the particle surface can improve the immunogenicity of subunit vaccines. Here, we used the SpyCatcher/Spytag system to conjugate ferritin nanoparticles with the p34 protein (F-p34).

View Article and Find Full Text PDF

African Swine Fever Virus (ASFV) is a highly contagious pathogen with nearly 100% mortality in swine, causing severe global economic loss. Current detection methods rely on nucleic acid amplification, which requires specialized equipment and skilled operators, limiting accessibility in resource-constrained settings. To address these challenges, we developed the Covalently Immobilized Magnetic Nanoparticles Enhanced CRISPR (CIMNE-CRISPR) system.

View Article and Find Full Text PDF

Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes.

iScience

January 2025

Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.

T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using .

View Article and Find Full Text PDF

African swine fever (ASF), a severe and highly contagious haemorrhagic viral disease of pigs, is becoming a major threat not only in Malaysia but around the world. The first confirmed case of ASF in Malaysia was reported in February 2021. Despite the emergence of ASF in Malaysia, genetic information on this causative pathogen for the local livestock is still limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!