Mus musculus is the only known species from which embryonic stem cells (ESC) can be isolated under conditions requiring only leukemia inhibitory factor (LIF). Other species are non-permissive in LIF media, and form developmentally primed epiblast stem cells (EpiSC) similar to cells derived from post-implantation, egg cylinders. To evaluate whether non-permissiveness extends to induced pluripotent stem cells (iPSC), we derived iPSC from the eight founder strains of the mouse Collaborative Cross. Two strains, NOD/ShiLtJ and the WSB/EiJ, were non-permissive, consistent with the previous classification of NOD/ShiLtJ as non-permissive to ESC derivation. We determined non-permissiveness is recessive, and that non-permissive genomes do not compliment. We overcame iPSC non-permissiveness by using GSK3B and MEK inhibitors with serum, a technique we termed 2iS reprogramming. Although used for ESC derivation, GSK3B and MEK inhibitors have not been used during iPSC reprogramming because they inhibit survival of progenitor differentiated cells. iPSC derived in 2iS are more transcriptionally similar to ESC than EpiSC, indicating that 2iS reprogramming acts to overcome genetic background constraints. Finally, of species tested for ESC or iPSC derivation, only some M. musculus strains are permissive under LIF culture conditions suggesting that this is an evolutionarily derived characteristic in the M. musculus lineage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168588 | PMC |
http://dx.doi.org/10.1038/s41598-018-32116-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!