Dengue virus (DENV) results in 100 million cases of infections and 22,000 deaths per year. Liver involvement, thrombocytopenia, haemorrhage and plasma leakage are characteristic manifestations of severe forms of DENV infection. However, the molecular pathways of DENV infection have not been comprehensively studied compared to the host immunological responses. We performed an in vivo study using the BALB/c mouse model with a modified mRNA differential display methodology (GeneFishing) using the annealing control primer (ACP) system to capture differentially expressed genes (DEGs) in mice liver upon primary infection with DENV1 and sequential heterologous infection with DENV2. Secondary heterologous infection with DENV2 was carried out at Immunoglobulin IgM and IgG peaks following the primary DENV1 infection with the hope of determining any potential effect antibodies IgM and IgG may have on sequential heterologous infection. 30 DEGs were identified and sequenced across all three treatment groups and they belong to a variety of important pathways such as apoptosis, innate immune response, inflammatory response, metabolic processes and oxidative stress. Analysis of differentially expressed genes in response to viral infection offers valuable knowledge about the dynamic and complex association between host cell and the virus. Furthermore, some DEGs identified support DENV induced liver damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313771PMC
http://dx.doi.org/10.3390/pathogens7040078DOI Listing

Publication Analysis

Top Keywords

heterologous infection
16
differentially expressed
12
expressed genes
12
sequential heterologous
12
infection denv2
12
infection
10
balb/c mouse
8
liver primary
8
primary infection
8
infection denv1
8

Similar Publications

Plant viruses have evolved different viral suppressors of RNA silencing (VSRs) to counteract RNA silencing which is a small RNA-mediated sequence-specific RNA degradation mechanism. Previous studies have already shown that the coat protein (CP) of cucumber mosaic virus (CMV) reduced RNA silencing suppression (RSS) activity of the VSR of CMV, the 2b protein. To demonstrate the universality of this CP-VSR interference, our study included three different viruses: CMV and peanut stunt virus (PSV) from the Bromoviridae, and plum pox virus (PPV) from the Potyviridae family.

View Article and Find Full Text PDF

Diplodia sapinea (Fr.) Fuckel is a widespread fungal pathogen affecting conifers worldwide. Infections can lead to severe symptoms, such as shoot blight, canker, tree death, or blue stain in harvested wood, especially in Pinus species.

View Article and Find Full Text PDF

Leptospirosis is a widespread disease throughout the world, presenting in severe clinical forms in dogs. The pathogenicity of the different serovars in field infections is not fully documented, and clinical diagnosis is often limited to a combination of serological tests and molecular analyses. The latter, although a fundamental tool, cannot identify the infecting strain without further analysis.

View Article and Find Full Text PDF

Optimizing encephalomyocarditis virus VP1 protein assembly on pseudorabies virus envelope via US9 protein anchoring.

Virulence

December 2025

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.

Live herpesvirus-vectored vaccines are critical in veterinary medicine, but they can sometimes offer insufficient protection due to suboptimal antigen expression or localization. Encephalomyocarditis virus (EMCV) is a significant zoonotic threat, with VP1 protein as a key immunogen on its capsid. To enhance immunogenicity, we explored the use of recombinant pseudorabies virus (rPRV) as a vaccine vector against EMCV.

View Article and Find Full Text PDF

Lipid nanoparticles encapsulating both adjuvant and antigen mRNA improve influenza immune cross-protection in mice.

Biomaterials

December 2024

Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA. Electronic address:

The rapid approval of SARS-CoV-2 mRNA lipid nanoparticle (LNP) vaccines indicates the versatility of mRNA LNPs in an urgent vaccine need. However, the mRNA vaccines do not induce mucosal cellular responses or broad protection against recent variants. To improve cross-protection of mRNA vaccines, here we engineered a pioneered mRNA LNP encapsulating with mRNA constructs encoding cytokine adjuvant and influenza A hemagglutinin (HA) antigen for intradermal vaccination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!