Crystals of left-handed Z-DNA [d(CGCGCG)] diffract X-rays to beyond 1 Å resolution, feature a small unit cell (∼18 × 31 × 44 Å) and are well hydrated, with around 90 water molecules surrounding the duplex in the asymmetric unit. The duplex shows regular hydration patterns in the narrow minor groove, on the convex surface and around sugar-phosphate backbones. Therefore, Z-DNA offers an ideal case to test the benefits of low-temperature neutron diffraction data collection to potentially determine the donor-acceptor patterns of first- and second-shell water molecules. Nucleic acid fragments pose challenges for neutron crystallography because water molecules are located on the surface rather than inside sequestered spaces such as protein active sites or channels. Water molecules can be expected to display dynamic behavior, particularly in cases where water is not part of an inner shell and directly coordinated to DNA atoms. Thus, nuclear density maps based on room-temperature diffraction data with a resolution of 1.6 Å did not allow an unequivocal determination of the orientations of water molecules. Here, cryo-neutron diffraction data collection for a Z-DNA crystal on the Macromolecular Neutron Diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory and the outcome of an initial refinement of the structure are reported. A total of 12 diffraction images were recorded with an exposure time of 3.5 h per image, whereby the crystal was static for each diffraction image with a 10° ϕ rotation between images. Initial refinements using these neutron data indicated the positions and orientations of 30 water molecules within the first hydration shell of the DNA molecule. This experiment constitutes a state-of-the-art approach and is the first attempt to our knowledge to determine the low-temperature neutron structure of a DNA crystal.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168769 | PMC |
http://dx.doi.org/10.1107/S2053230X1801066X | DOI Listing |
J Chem Inf Model
January 2025
Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain.
Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).
View Article and Find Full Text PDFAcc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFNutrients
December 2024
Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
High sugar intake, particularly fructose, is implicated in obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This raises a paradoxical question-how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Faculty of Chemistry and Pharmacy, University of Opole, Oleska 48, 45-052 Opole, Poland.
O-Methyldehydroserine, ΔSer(Me), is a non-standard α,β-dehydroamino acid, which occurs naturally in Cyrmenins with potential pharmaceutical application. The C-terminal part and the side chain of the ΔSer(Me) residue constitute the β-methoxyacrylate unit, responsible for antifungal activity of Cyrmenins. The short model, Ac-ΔSer(Me)-OMe, was analyzed considering the geometrical isomer Z () and E ().
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biomedical Chemistry, Pogodinskaya Str., 10, Moscow 119121, Russia.
Biomacromolecules generally exist and function in aqueous media. Is it possible to estimate the state and properties of molecules in an initial three-dimensional colloidal solution based on the structure properties of biomolecules adsorbed on the two-dimensional surface? Using atomic force microscopy to study nanosized objects requires their immobilization on a surface. Particles undergoing Brownian motion in a solution significantly reduce their velocity near the surface and become completely immobilized upon drying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!