Objective: Steady-state visual evoked potentials (SSVEPs) are neural oscillations from the parietal and occipital regions of the brain that are evoked from flickering visual stimuli. SSVEPs are robust signals measurable in the electroencephalogram (EEG) and are commonly used in brain-computer interfaces (BCIs). However, methods for high-accuracy decoding of SSVEPs usually require hand-crafted approaches that leverage domain-specific knowledge of the stimulus signals, such as specific temporal frequencies in the visual stimuli and their relative spatial arrangement. When this knowledge is unavailable, such as when SSVEP signals are acquired asynchronously, such approaches tend to fail.
Approach: In this paper, we show how a compact convolutional neural network (Compact-CNN), which only requires raw EEG signals for automatic feature extraction, can be used to decode signals from a 12-class SSVEP dataset without the need for user-specific calibration.
Main Results: The Compact-CNN demonstrates across subject mean accuracy of approximately 80%, out-performing current state-of-the-art, hand-crafted approaches using canonical correlation analysis (CCA) and Combined-CCA. Furthermore, the Compact-CNN approach can reveal the underlying feature representation, revealing that the deep learner extracts additional phase- and amplitude-related features associated with the structure of the dataset.
Significance: We discuss how our Compact-CNN shows promise for BCI applications that allow users to freely gaze/attend to any stimulus at any time (e.g. asynchronous BCI) as well as provides a method for analyzing SSVEP signals in a way that might augment our understanding about the basic processing in the visual cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/aae5d8 | DOI Listing |
Sensors (Basel)
January 2025
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.
This study investigates the potential of deploying a neural network model on an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-time inference within the predictive maintenance framework. In the context of Industry 4.0, edge computing aims to process data directly on local devices rather than relying on a cloud infrastructure.
View Article and Find Full Text PDFJ Imaging
January 2025
RCAM Laboratory, Telecommunications Department, Sidi Bel Abbes University, Sidi Bel Abbes 22000, Algeria.
In recent years, deep-network-based hashing has gained prominence in image retrieval for its ability to generate compact and efficient binary representations. However, most existing methods predominantly focus on high-level semantic features extracted from the final layers of networks, often neglecting structural details that are crucial for capturing spatial relationships within images. Achieving a balance between preserving structural information and maximizing retrieval accuracy is the key to effective image hashing and retrieval.
View Article and Find Full Text PDFSci Rep
January 2025
National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
This study aimed to develop a real-time, noninvasive hyperkalemia monitoring system for dialysis patients with chronic kidney disease. Hyperkalemia, common in dialysis patients, can lead to life-threatening arrhythmias or sudden death if untreated. Therefore, real-time monitoring of hyperkalemia in this population is crucial.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran.
Unlabelled: There is a growing interest in utilizing 3D culture models for stem cell and cancer cell research due to their closer resemblance to in vivo environments. In this study, human mesenchymal stem cells (MSCs) were cultured using adipocytes and osteocytes as differentiative mediums on varying concentrations of chitosan substrate. Light microscopy was employed to capture cell images from the first day to the 21st day of differentiation.
View Article and Find Full Text PDFJ Clin Med
January 2025
Hospital Virgen de la Arrixaca, 30120 Murcia, Spain.
Accurate segmentation of the left ventricular myocardium in cardiac MRI is essential for developing reliable deep learning models to diagnose left ventricular non-compaction cardiomyopathy (LVNC). This work focuses on improving the segmentation database used to train these models, enhancing the quality of myocardial segmentation for more precise model training. We present a semi-automatic framework that refines segmentations through three fundamental approaches: (1) combining neural network outputs with expert-driven corrections, (2) implementing a blob-selection method to correct segmentation errors and neural network hallucinations, and (3) employing a cross-validation process using the baseline U-Net model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!