Electroencephalographic Biomarkers for Treatment Response Prediction in Major Depressive Illness: A Meta-Analysis.

Am J Psychiatry

From the Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis; the Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston; the Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Mass.; the Department of Psychiatry, Stanford University School of Medicine, Palo Alto, Calif.; Butler Hospital and Warren Alpert Medical School of Brown University, Providence, R.I.; the Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison; the Department of Psychiatry, University of Miami Miller School of Medicine, Miami.

Published: January 2019

Objective: Reducing unsuccessful treatment trials could improve depression treatment. Quantitative EEG (QEEG) may predict treatment response and is being commercially marketed for this purpose. The authors sought to quantify the reliability of QEEG for response prediction in depressive illness and to identify methodological limitations of the available evidence.

Method: The authors conducted a meta-analysis of diagnostic accuracy for QEEG in depressive illness, based on articles published between January 2000 and November 2017. The review included all articles that used QEEG to predict response during a major depressive episode, regardless of patient population, treatment, or QEEG marker. The primary meta-analytic outcome was the accuracy for predicting response to depression treatment, expressed as sensitivity, specificity, and the logarithm of the diagnostic odds ratio. Raters also judged each article on indicators of good research practice.

Results: In 76 articles reporting 81 biomarkers, the meta-analytic estimates showed a sensitivity of 0.72 (95% CI=0.67-0.76) and a specificity of 0.68 (95% CI=0.63-0.73). The logarithm of the diagnostic odds ratio was 1.89 (95% CI=1.56-2.21), and the area under the receiver operator curve was 0.76 (95% CI=0.71-0.80). No specific QEEG biomarker or specific treatment showed greater predictive power than the all-studies estimate in a meta-regression. Funnel plot analysis suggested substantial publication bias. Most studies did not use ideal practices.

Conclusions: QEEG does not appear to be clinically reliable for predicting depression treatment response, as the literature is limited by underreporting of negative results, a lack of out-of-sample validation, and insufficient direct replication of previous findings. Until these limitations are remedied, QEEG is not recommended for guiding selection of psychiatric treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6312739PMC
http://dx.doi.org/10.1176/appi.ajp.2018.17121358DOI Listing

Publication Analysis

Top Keywords

treatment response
12
depressive illness
12
depression treatment
12
treatment
9
response prediction
8
major depressive
8
qeeg
8
qeeg predict
8
logarithm diagnostic
8
diagnostic odds
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!