Note: A Laue crystal imager for high energy quasi-monochromatic x-ray.

Rev Sci Instrum

Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Published: September 2018

A newly designed transmission type x-ray Laue imager for tens of keV hard x-rays is reported. Compared with the traditional reflection type x-ray crystal imager, the transmission geometry produces a much better image quality for high energy hard x-rays. This system was assessed via a calibration experiment performed at the SPring8 synchrotron radiation facility. With a Ta x-ray fluorescer, the mono-energetic x-ray at 70 keV from the synchrotron radiation was converted to an isotropically emitted Ta K-shell source at 57.5 keV and 65 keV. A tungsten pinhole array was employed as the test object, and clear images of the pinholes with a magnification of ∼5 were acquired. These images exhibited superior quality in the dispersion plane. As an extension of this work, a slit-free full-spectral Laue imager is proposed for high resolution hard x-ray imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5046108DOI Listing

Publication Analysis

Top Keywords

crystal imager
8
high energy
8
type x-ray
8
laue imager
8
hard x-rays
8
synchrotron radiation
8
x-ray
6
note laue
4
laue crystal
4
imager
4

Similar Publications

Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.

View Article and Find Full Text PDF

Strength Tests and Mechanism of Composite Stabilized Lightweight Soil Using Dredged Sludge.

Materials (Basel)

January 2025

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.

To achieve resourceful utilization of dredged sludge, lightweight treatment was performed on sludge from Xunsi River in Wuhan using fly ash, cement, and expanded polystyrene (EPS) particles. Density tests and unconfined compressive strength (UCS) tests were conducted on the composite stabilized sludge lightweight soil to determine the optimal mix ratio for high-quality roadbed fill material with low self-weight and high strength. Subsequently, microstructural tests, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), were conducted.

View Article and Find Full Text PDF

A multiplexing method based on multidimensional readout method.

Phys Med Biol

January 2025

Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Guangqiao Load, Shenzhen, 518132, CHINA.

To develop and validate a novel multidimensional readout method that significantly reduces the number of readout channels in PET detectors while maintaining high spatial and energy performance. Approach: We arranged a 3×3×4 SiPM array in multiple dimensions and employed row/column/layer summation with a resistor-based splitting circuit. We then applied denoising methods to enhance the peak-to-valley ratio in the decoding map, ensuring accurate crystal-position determination.

View Article and Find Full Text PDF

Tumor hypoxia significantly limits the effectiveness of radiotherapy, as oxygen is crucial for producing cancer-killing reactive oxygen species. To address this, we synthesized nanosized faujasite (PBS-Na-FAU) zeolite crystals using clinical-grade phosphate-buffered saline (PBS) as the solvent, ensuring preserved crystallinity, microporous volume, and colloidal stability. The zeolite nanocrystals showed enhanced safety profiles and , and studies showed no apparent toxicity to animals.

View Article and Find Full Text PDF

Flexible deformation and special interface structure in nanoparticle-stabilized Pickering bubbles strengthen the immunological response as adjuvant.

J Mater Chem B

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!