Multimode optical fiber photonic doppler velocimetery.

Rev Sci Instrum

Applied Physics Division, Soreq NRC, Yavne 81800, Israel.

Published: September 2018

A new optical fiber head for Photonic Doppler Velocimetry (PDV) made from a combination of fiber types [multimode (MM) and single-mode (SM)] and lenses is described. The input laser beam is delivered by a SM fiber and imaged onto the target by simple optics, including an imaging lens centered inside a larger lens, whose role is to collect and image the back reflected light into the MM collection fiber. The large core of the MM fiber enhances the collection efficiency and also reduces its dependence on the target angle. Transmission through the MM fiber reduces the heterodyne fringe visibility considerably, but the Fourier analysis still enables very accurate resolution of the fringe frequency (and hence the velocity). The new PDV head with 20 GHz bandwidth was tested in a dynamical shock wave experiment to measure velocities of ∼3 km/s (∼3.9 GHz), and the results agreed very well with measurements by a standard SM PDV.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5047928DOI Listing

Publication Analysis

Top Keywords

optical fiber
8
photonic doppler
8
fiber
7
multimode optical
4
fiber photonic
4
doppler velocimetery
4
velocimetery optical
4
fiber head
4
head photonic
4
doppler velocimetry
4

Similar Publications

Purpose: To assess the diagnostic capability of pattern electroretinography (PERG) and varying circumpapillary optical coherence tomography (OCT) scan diameters in glaucoma suspects (GS).

Methods: This is a prospective, cross-sectional study. Circumpapillary retinal nerve fiber layer thickness (RNFLT) was measured using spectral domain OCT in 49 eyes from 26 patients (36 normal, 13 GS) in three circle diameters (3.

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

Carbon Black Absorption Enhanced Fiber-Optic Photoacoustic Gas Sensing System with Ultrahigh Sensitivity.

Anal Chem

January 2025

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.

A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.

View Article and Find Full Text PDF

Purpose: In this study, it was planned to compare the macular ganglion cell analysis (GCA) and peripapillary retinal nerve fiber layer (pRNFL) of the patients with preperimetric glaucoma (PPG), early stage glaucoma (EG) and the control group.

Methods: This retrospective study included a total of 103 eyes: 38 from EG patients, 30 from PPG patients, and 35 from healthy individuals at Ankara Bilkent City Hospital Glaucoma Unit between January 2018 and September 2021. Eyes were categorized into control, PPG, and EG groups based on visual field (VF) classification.

View Article and Find Full Text PDF

Efficient luminescent solar concentrators based on solvent polarity induced multiple-colored carbon dots.

J Colloid Interface Sci

January 2025

State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071 PR China. Electronic address:

Luminescent solar concentrators (LSCs) are large scale sunlight collector and can be used for building-integrated photovoltaics (BIPV). Achieving high-performance LSCs requires fluorophores with broad absorption, high quantum yield and a large Stokes shift. Nevertheless, conventional high-efficiency LSCs typically rely on heavy metal-based quantum dots as fluorophores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!