A versatile apparatus for fermionic lithium quantum gases based on an interference-filter laser system.

Rev Sci Instrum

Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany.

Published: September 2018

We report on the design and construction of a versatile setup for experiments with ultracold lithium (Li) gases. We discuss our methods to prepare an atomic beam and laser cool it in a Zeeman slower and a subsequent magneto-optical trap, which rely on established methods. We focus on our laser system based on a stable interference-filter-stabilized, linear-extended-cavity diode laser, so far unreported for lithium wavelengths. Moreover, we describe our optical setup to combine various laser frequencies for cooling, manipulation, and detection of Li atoms. We characterize the performance of our system preparing degenerate samples of Li atoms via forced evaporation in a hybrid crossed-beam optical-dipole trap plus confining magnetic trap. Our apparatus allows one to produce quantum gases of ≈ 10…10 fermionic lithium-6 atoms at nanokelvin temperatures in cycle times below 10 s. Our optical system is particularly suited to study the dynamics of fermionic superfluids in engineered optical potentials.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5045827DOI Listing

Publication Analysis

Top Keywords

quantum gases
8
laser system
8
laser
5
versatile apparatus
4
apparatus fermionic
4
fermionic lithium
4
lithium quantum
4
gases based
4
based interference-filter
4
interference-filter laser
4

Similar Publications

Herein, highly fluorescent sulfur and nitrogen co-doped carbon dots (N, S-CDs) had been employed as a fluorescent probe to analyze Cu in drinking water. The biogenic creatinine is known to form a stable complex with Cu; hence, it was rationally selected as a bioinspired nitrogen substrate for the first time to enhance N, S-CDs selectivity towards Cu. Moreover, the literature was surveyed to guide the selection of sulfur and carbon sources to optimize N, S-CDs quantum yield (QY), so thiourea and disodium edetate are co-carbonized with biogenic creatinine at 270°C for 40 min and characterized using different techniques.

View Article and Find Full Text PDF

Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.

View Article and Find Full Text PDF

We realize a Laughlin state of two rapidly rotating fermionic atoms in an optical tweezer. By utilizing a single atom and spin resolved imaging technique, we sample the Laughlin wave function thereby revealing its distinctive features, including a vortex distribution in the relative motion, correlations in the particles' relative angle, and suppression of the interparticle interactions. Our Letter lays the foundation for atom-by-atom assembly of fractional quantum Hall states in rotating atomic gases.

View Article and Find Full Text PDF
Article Synopsis
  • Efficient readout of information is crucial for quantum simulation, yet standard measurements typically focus on just one observable at a time.
  • This research introduces an atomic beam splitter for controlled outcoupling, allowing simultaneous measurement of both number imbalance and relative phase in two coupled 1D Bose gases, acting as a simulator for sine-Gordon field theory.
  • The method demonstrates quantum limitations through number squeezing, tracks Josephson oscillation dynamics, and permits atom extraction while preserving coherent dynamics, paving the way for studying quantum properties and multitime correlation functions in larger systems.
View Article and Find Full Text PDF

This study assessed the geogenic radon potential using PECAME, an innovative tool designed to simultaneously measure soil-gas permeability and CO concentration - two key parameters for understanding radon transport in soil. Comparative field studies using the RADON-JOK device in various geological settings in Japan and Poland demonstrate the effectiveness of PECAME. These studies reveal a strong correlation between PECAME and RADON-JOK, with an R value of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!