Metal-halide perovskites are promising lasing materials for the realization of monolithically integrated laser sources, the key components of silicon photonic integrated circuits (PICs). Perovskites can be deposited from solution and require only low-temperature processing, leading to significant cost reduction and enabling new PIC architectures compared to state-of-the-art lasers realized through the costly and inefficient hybrid integration of III-V semiconductors. Until now, however, due to the chemical sensitivity of perovskites, no microfabrication process based on optical lithography (and, therefore, on existing semiconductor manufacturing infrastructure) has been established. Here, the first methylammonium lead iodide perovskite microdisc lasers monolithically integrated into silicon nitride PICs by such a top-down process are presented. The lasers show a record low lasing threshold of 4.7 μJcm at room temperature for monolithically integrated lasers, which are complementary metal-oxide-semiconductor compatible and can be integrated in the back-end-of-line processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.8b02811DOI Listing

Publication Analysis

Top Keywords

monolithically integrated
16
silicon photonic
8
lasers
5
integrated
5
monolithically
4
integrated perovskite
4
perovskite semiconductor
4
semiconductor lasers
4
lasers silicon
4
photonic chips
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!