Background: A licensed vaccine against hepatitis C virus (HCV) has not become available to date. The stability and antigenicity of a targeted synthesized recombinant fusion protein consisting of a truncated core and NS3 (rC/N) of HCV had been predicted. Although safe antigens, recombinant proteins are not efficacious vaccines without adjuvants. The present study evaluated the immunogenicity of rC/N as a bipartite antigen accompanied by Neisseria meningitidis serogroup B outer membrane vesicles (NMB OMVs) in BALB/c mice.
Methods: The NMB OMVs were produced and evaluated accurately. The administrations were as follows: rC/N-OMV, rC/N-Freund’s complete/incomplete adjuvant (CIA), rC/N-MF59, rC/N, OMV, MF59, and PBS. The production of Th1 (IFN-γ, IL-2)/Th2 (IL-4)/Th17 (IL-17) cytokines and granzyme B (cytotoxic indicator) by splenic mononuclear cells and the humoral concentration of total IgG/IgG1 (Th2)/IgG2a (Th1) in sera of mice were measured using mouse ELISA kits.
Results: Concentrations of Th1/Th2/Th17 cytokines, granzyme B, and immunoglobulins in the spleens and sera of immunized mice, which had received antigen plus each adjuvant (rC/N-OMV, rC/N-Freund’s CIA, and rC/N-MF59), significantly raised compared to the controls (rC/N, OMV, MF59, and PBS). Th1-type responses were dominant over Th2-type responses in vaccinated mice with rC/N-OMV, and Th2 type responses increased dominantly in vaccinated mice with rC/N-MF59 (p < 0.05).
Discssion: NMB OMVs were able to increase Th1 immune responses dramatically more than MF59 and Freund’s CIA. The formulation of rC/N with NMB OMVs showed its ability to induce Th1, Th2, and Th17 immune responses. rC/N-NMB OMVs is a promising approach for the development of an HCV therapeutic vaccine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6462289 | PMC |
http://dx.doi.org/10.29252/.23.4.235 | DOI Listing |
Iran Biomed J
July 2019
Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
Background: A licensed vaccine against hepatitis C virus (HCV) has not become available to date. The stability and antigenicity of a targeted synthesized recombinant fusion protein consisting of a truncated core and NS3 (rC/N) of HCV had been predicted. Although safe antigens, recombinant proteins are not efficacious vaccines without adjuvants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!