Produced by levansucrase, levan and levan oligosaccharides (GFn) have potential applications in food and pharmaceutical industries such as prebiotics, anti-tumor and anti-inflammatory agents. Previous study reported that Bacillus licheniformis RN-01 levansucrase could produce levan oligosaccharides and long-chain levan. However, its N251A and N251Y mutants could effectively produce short-chain oligosaccharides upto GF3, but they could not produce long-chain levan. We hypothesized that these mutations probably reduced GF3 binding affinity in levansucrase active site that contains fructosyl-Asp93 intermediate and caused GF3 to be in an unfavorable orientation for transfructosylation; therefore, levansucrase could not effectively extend GF3 by one fructosyl residue to produce GF4 and subsequently long-chain levan. However, these mutations probably did not significantly reduce binding affinity or drastically change orientation of GF2; therefore, levansucrase could still extend GF2 to produce GF3. Using this hypothesis, we employed molecular dynamics to investigate effects of these mutations on GF2/GF3 binding in levansucrase active site. Our results reasonably support this hypothesis as N251A and N251Y mutations did not significantly reduce GF2 binding affinity, as calculated by MM-GBSA technique and hydrogen bond occupations, or drastically change orientation of GF2 in levansucrase active site, as measured by distance between atoms necessary for transfructosylation. However, these mutations drastically decreased GF3 binding affinity and caused GF3 to be in an unfavorable orientation for transfructosylation. Furthermore, the free energy decomposition and hydrogen bond occupation results suggest the importance of Arg255 in GF2/GF3 binding in levansucrase active site. This study provides important and novel insight into the effects of N251A and N251Y mutations on GF2/GF3 binding in levansucrase active site and how they may disrupt production of long-chain levan. This knowledge could be beneficial in designing levansucrase to efficiently produce levan oligosaccharides with desired length.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168164 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204915 | PLOS |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080.
The TRAMP complex contains two enzymatic activities essential for RNA processing upstream of the nuclear exosome. Within TRAMP, RNA is 3' polyadenylated by a subcomplex of Trf4/5 and Air1/2 and unwound 3' to 5' by Mtr4, a DExH helicase. The molecular mechanisms of TRAMP assembly and RNA shuffling between the two TRAMP catalytic sites are poorly understood.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
Current dogma assumes that lipid asymmetry in biological membranes is actively maintained and dispensable for cell viability. The inner (cytoplasmic) membrane (IM) of is asymmetric. However, the molecular mechanism that maintains this uneven distribution is unknown.
View Article and Find Full Text PDFCell Rep
January 2025
State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Texas A&M University, Chemistry, UNITED STATES OF AMERICA.
The functionalization of pyridines at positions remote to the N-atom remains an outstanding problem in organic synthesis. The inherent challenges associated with overriding the influence of the embedded N-atom within pyridines was overcome using n-butylsodium, which provided an avenue to deprotonate and functionalize the C4-position over traditionally observed addition products that are formed with organolithium bases. In this work, we show that freshly generated 4-sodiopyrdines could undergo transition metal free alkylation reactions directly with a variety of primary alkyl halides bearing diverse functional groups.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai Medical Center, New York, NY, USA.
Background: Presenilin1 (PS1)/γ-secretase cleaves within the transmembrane domain of numerous receptor substrates. Mutations in PS1 have implications on the catalytic subunit of γ-secretase decreasing its activity and becoming a potential causative factor for Familial Alzheimer's Disease (FAD). This work studies the role of PS1/γ-secretase on the processing, angiogenic signaling, and functions of VEGFR2 and the effects of PS1 FAD mutants on the γ-secretase-mediated epsilon cleavage of VEGFR2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!