A challenge in the clinical adoption of cell-free DNA (cfDNA) liquid biopsies for cancer care is their high cost compared to potential reimbursement. The most common approach used in liquid biopsies to achieve high specificity detection of circulating tumor DNA (ctDNA) among a large background of normal cfDNA is to attach molecular barcodes to each DNA template, amplify it, and then sequence it many times to reach a low-error consensus. In applications where the highest possible specificity is required, error rate can be lowered further by independently detecting the sequences of both strands of the starting cfDNA. While effective in error reduction, the additional sequencing redundancy required by such barcoding methods can increase the cost of sequencing up to 100-fold over standard next-generation sequencing (NGS) of equivalent depth. We present a novel library construction and analysis method for NGS that achieves comparable performance to the best barcoding methods, but without the increase in sequencing and subsequent sequencing cost. Named Proximity-Sequencing (Pro-Seq), the method merges multiple copies of each template into a single sequencing read by physically linking the molecular copies so they seed a single sequencing cluster. Since multiple DNA copies of the same template are compared for consensus within the same cluster, sequencing accuracy is improved without the use of redundant reads. Additionally, it is possible to represent both senses of the starting duplex in a single cluster. The resulting workflow is simple, and can be completed by a single technician in a work day with minimal hands on time. Using both cfDNA and cell line DNA, we report the average per-mutation detection threshold and per-base analytical specificity to be 0.003% and >99.9997% respectively, demonstrating that Pro-Seq is among the highest performing liquid biopsy technologies in terms of both sensitivity and specificity, but with greatly reduced sequencing costs compared to existing methods of comparable accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6168144PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204265PLOS

Publication Analysis

Top Keywords

sequencing
11
pro-seq method
8
sequencing accuracy
8
liquid biopsies
8
barcoding methods
8
methods increase
8
copies template
8
single sequencing
8
dna
6
duplex proximity
4

Similar Publications

Glioblastoma is the deadliest primary brain tumor, largely due to inevitable recurrence of the disease after treatment. While most recurrences are local, patients rarely present with a new discontiguous focus of glioblastoma. Little is currently known about the genetic profile of discontiguous recurrences.

View Article and Find Full Text PDF

Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.

Orphanet J Rare Dis

January 2025

The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.

Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.

Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.

View Article and Find Full Text PDF

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.

View Article and Find Full Text PDF

Background: Aspergillus niger is an important industrial filamentous fungus used to produce organic acids and enzymes. A wide dynamic range of promoters, particularly strong promoters, are required for fine-tuning the regulation of gene expression to balance metabolic flux and achieve the high yields of desired products. However, the limited understanding of promoter architectures and activities restricts the efficient transcription regulation of targets in strain engineering in A.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!