Circulating tumor cells (CTCs) can reliably be identified in cancer patients and are associated with clinical outcome. Next-generation "liquid biopsy" technologies will expand CTC diagnostic investigation to include phenotypic characterization and single-cell molecular analysis. We describe here a rare cell analysis platform designed to comprehensively collect and identify CTCs, enable multi-parameter assessment of individual CTCs, and retrieve single cells for molecular analysis. The platform has the following four integrated components: 1) density-based separation of the CTC-containing blood fraction and sample deposition onto microscope slides; 2) automated multiparameter fluorescence staining; 3) image scanning, analysis, and review; and 4) mechanical CTC retrieval. The open platform utilizes six fluorescence channels, of which four channels are used to identify CTC and two channels are available for investigational biomarkers; a prototype assay that allows three investigational biomarker channels has been developed. Single-cell retrieval from fixed slides is compatible with whole genome amplification methods for genomic analysis. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586054PMC
http://dx.doi.org/10.1002/cyto.a.23619DOI Listing

Publication Analysis

Top Keywords

circulating tumor
8
tumor cells
8
molecular analysis
8
analysis platform
8
analysis
6
rarecyte® platform
4
platform next-generation
4
next-generation analysis
4
analysis circulating
4
cells circulating
4

Similar Publications

Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.

View Article and Find Full Text PDF

Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.

View Article and Find Full Text PDF

Colorectal cancer is one of the most common malignant tumors in the world, and about 50% of its advanced patients will have liver metastasis. Preoperative assessment of the risk of liver metastasis in patients with colorectal cancer is of great significance for making individualized treatment plans. Traditional imaging examinations and tumor markers have some limitations in predicting the risk of liver metastasis.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM), a transient form of diabetes that resolves postpartum, is a major risk factor for type 2 diabetes (T2D) in women. While the progression from GDM to T2D is not fully understood, it involves both genetic and environmental components. By integrating clinical, metabolomic, and genome-wide association study (GWAS) data, we identified associations between decreased sphingolipid biosynthesis and future T2D, in part through the allele of the gene in Hispanic women shortly after a GDM pregnancy.

View Article and Find Full Text PDF

While deemed potentially curative, surgical resection of hepatocellular carcinoma (HCC) is associated with >70% risk of post-operative relapse. Recurrence is uniquely multifactorial in HCC, potentially stemming from metachronous re-occurrence of the original tumor or de novo cancerization. Circulating tumor DNA may improve personalized risk stratification post-resection, a setting where adjuvant immunotherapy has failed to provide survival benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!