CuCrO2 nanoparticle decorated SnO2 nanofiber composites have been prepared as novel p-n heterostructured semiconductor photocatalysts for the degradation of organic pollutants in wastewater. The composite structure was achieved via drop casting of various amounts of hydrothermally derived CuCrO2 nanoparticles on electrospun SnO2 nanofibers. The microstructural and morphological features of each semiconductor and the formation of p-n heterojunctions between them were characterized. In addition, the photo-response and electrochemical properties of the samples were determined. The photocatalytic activity of the heterostructured photocatalysts was investigated systematically as a function of the amount of CuCrO2 nanoparticles in the samples. Experimental results showed that the optimal decoration amount was 0.6 wt% CuCrO2 on SnO2. This composite photocatalyst displayed a 41% higher rate constant value compared to pure SnO2 nanofibers in the degradation of methylene blue dye molecules and reached 83% degradation under UV/visible light irradiation after 1 h. The increase in the photocatalytic activity was ascribed to the incorporation of Cr3+ and Cu+ cations into the SnO2 host lattice and the more effective electron-hole pair separation in the heterostructured sample. The presented data here are highly convincing in comparison to those of UV active p-n heterostructured photocatalysts reported previously in the literature. Therefore, this work opens the way to develop visible light active p-n heterostructured semiconductor photocatalysts using p-type delafossites with n-type oxides.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt02850hDOI Listing

Publication Analysis

Top Keywords

p-n heterostructured
16
heterostructured photocatalysts
12
uv/visible light
8
light active
8
heterostructured semiconductor
8
semiconductor photocatalysts
8
cucro2 nanoparticles
8
sno2 nanofibers
8
photocatalytic activity
8
active p-n
8

Similar Publications

Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction NiP-NCDs-Co(OH)-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the NiP-NCDs-Co(OH)-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity.

View Article and Find Full Text PDF

Anisotropically Epitaxial P-N Heterostructures Actuating Efficient Z-Scheme Photocatalytic Water Splitting.

Small

January 2025

Key Laboratory of Eco-chemical Engineering, International S&T Cooperation Foundation of Eco-chemical Engineering and Green Manufacture, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.

Crafting anisotropically epitaxial p-n heterostructures with Z-scheme charge transmission is a promising avenue toward excellent photocatalytic efficiency, yet the large lattice mismatch and diverse crystal growth habits between components have often arisen as a big challenge to this goal. Here, anisotropically epitaxial p-n heterostructures with 19.8% lattice mismatch are obtained via a dynamics-mediated seeded growth tactic under reaction temperature as low as 60 °C.

View Article and Find Full Text PDF

Three-dimensional CeO Nanosheets/CuO nanoflowers p-n heterostructure supported on carbon cloth as electrochemical sensor for sensitive nitrite detection.

Anal Chim Acta

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China. Electronic address:

Nitrite is widely used as a food additive, and it is of great significance to realize accurate detection of nitrite for food safety. Electrochemical technique is characterized by simple operation and portability, which enables rapid and accurate detection. The key factors affecting the nitrite detection performance are the electrocatalytic activity and interfacial electron transfer efficiency of the electrode.

View Article and Find Full Text PDF

Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFeO@g-CN heterojunctions were developed by embedding p-type NiFeO nanoparticles (NPs) within n-type porous ultrathin g-CN (p-uCN) nanosheets. The optimized NiFeO@g-CN, loaded with 20 wt % magnetic counterparts, exhibits exceptional photocatalytic methylene blue (MB) degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.

View Article and Find Full Text PDF

Nanoscale Ferroelectric Programming of van der Waals Heterostructures.

Nano Lett

December 2024

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

We demonstrate an approach to creating nanoscale potentials in van der Waals layers integrated with a buried programmable ferroelectric layer. Using ultra-low-voltage electron beam lithography (ULV-EBL), we can program the ferroelectric polarization in AlBN (AlBN) thin films, generating structures with sizes as small as 35 nm. We demonstrate the ferroelectric field effect with a graphene/vdW stack on AlBN by creating a p-n junction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!