The neural dynamics underpinning binary perceptual decisions and their transformation into actions are well studied, but real-world decisions typically offer more than two response alternatives. How does decision-related evidence accumulation dynamically influence multiple action representations in humans? The heightened conservatism required in multiple compared with binary choice scenarios suggests a mechanism that compensates for increased uncertainty when multiple choices are present by suppressing baseline activity. Here, we tracked action representations using corticospinal excitability during four- and two-choice perceptual decisions and modeled them using a sequential sampling framework. We found that the predictions made by leaky competing accumulator models to accommodate multiple choices (i.e., reduced baseline activity to compensate increased uncertainty) were borne out by dynamic changes in human action representations. This suggests a direct and continuous influence of interacting evidence accumulators, each favoring a different decision alternative, on downstream corticospinal excitability during complex choice.

Download full-text PDF

Source
http://dx.doi.org/10.1162/jocn_a_01347DOI Listing

Publication Analysis

Top Keywords

action representations
12
perceptual decisions
8
increased uncertainty
8
multiple choices
8
baseline activity
8
corticospinal excitability
8
neurodynamic decision
4
decision variable
4
variable human
4
human multi-alternative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!