Purpose: Transcutaneous oxygen tension (TcpO ) provides information about blood perfusion in the tissue immediately below the skin. These data are valuable in assessing wound healing problems, diagnosing peripheral vascular/arterial insufficiency, and predicting disease progression or the response to therapy. Currently, TcpO is primarily measured using electrochemical skin sensors, which consume oxygen and are prone to calibration errors. The goal of the present study was to develop a reliable method for TcpO measurement in human subjects.

Methods: We have developed a novel TcpO oximetry method based on electron paramagnetic resonance (EPR) principles with an oxygen-sensing skin adhesive film, named the superficial perfusion oxygen tension (SPOT) chip. The SPOT chip is a 3-mm diameter, 60-μm thick circular film composed of a stable paramagnetic oxygen sensor. The chip is covered with an oxygen-barrier material on one side and secured on the skin by a medical adhesive transfer tape to ensure that only the oxygen that diffuses through the skin surface is measured. The method quantifies TcpO through the linewidth of the EPR spectrum.

Results: Repeated measurements using a cohort of 10 healthy human subjects showed that the TcpO measurements were robust, reliable, and reproducible. The TcpO values ranged from 7.8 ± 0.8 to 22.0 ± 1.0 mmHg in the volar forearm skin (N = 29) and 8.1 ± 0.3 to 23.4 ± 1.3 mmHg in the foot (N = 86).

Conclusions: The results demonstrated that the SPOT chip can measure TcpO reliably and repeatedly under ambient conditions. The SPOT chip method could potentially be used to monitor TcpO in the clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289671PMC
http://dx.doi.org/10.1002/mrm.27445DOI Listing

Publication Analysis

Top Keywords

spot chip
16
tcpo
9
transcutaneous oxygen
8
skin adhesive
8
adhesive film
8
oxygen tension
8
skin
7
oxygen
5
chip
5
oxygen measurement
4

Similar Publications

Development of multiple genome-wide proteome microarrays comprised wafer substrate-based chip and its scanner: An advanced high-throughput and sensitivity for molecular interactions studies.

Biosens Bioelectron

December 2024

Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. Electronic address:

Proteome microarray technology enables high-throughput analysis of protein interactions with all kinds of molecules. Wafer (6-inch) substrates offer a promising alternative to conventional glass (2.6 × 7.

View Article and Find Full Text PDF

Characterizing Microbubble-Mediated Permeabilization in a Vessel-on-a-Chip Model.

Small

December 2024

Biomedical Engineering, Department of Cardiology, Cardiovascular Institute, Erasmus MC, Wytemaweg 80, Rotterdam, 3015 CN, The Netherlands.

Drug transport from blood to extravascular tissue can locally be achieved by increasing the vascular permeability through ultrasound-activated microbubbles. However, the mechanism remains unknown, including whether short and long cycles of ultrasound induce the same onset rate, spatial distribution, and amount of vascular permeability increase. Accurate models are necessary for insights into the mechanism so a microvessel-on-a-chip is developed with a membrane-free extravascular space.

View Article and Find Full Text PDF

Objective: Microfluidics has emerged as a promising technique to prepare nanoparticles. However, the current microfluidic devices are mainly chip-based and are often integrated into expensive systems that lack on-the-spot versatility. The aim of this study was to set up a modular microfluidic system based on low-cost capillaries and reusable, easy-to-clean building blocks that can prepare poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with and without incorporated water-soluble biomacromolecules.

View Article and Find Full Text PDF

Unlabelled: As an enduring hot topic in the field of innate immunity, apoptosis is widely considered an effective approach to eliminate pathogenic microbes and plays a crucial role during host-pathogen interactions. Recently, researchers have found that the virus-containing host cells could transmit apoptotic signals to the surrounding uninfected cells during infection, but the mechanism remains unclear. Here, we found that exosomes secreted by WSSV-infected mud crab hemocytes contain viral nucleic acid wsv277, which could be transported to the recipient cells and further expressed viral protein with phosphokinase activity.

View Article and Find Full Text PDF

A low-cost and low-power-consumption optical transmitter with a narrow shoreline is crucial for short-reach optical communication. To increase the shoreline bandwidth density (Gbps/mm) at low cost, multiple optical components, including lasers, should be integrated on a single chip. In this study, we develop a sixteen-channel membrane laser array integrated with silica-based spot-size convertors on a SiO/Si substrate, with a footprint of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!