Objective: In 2016, there were an estimated 56 870 new cases of thyroid cancer (TC) in the USA. Fine needle aspiration cytology (FNAC) is the most safe, accurate and cost-effective method for the initial investigation of thyroid nodules. FNAC is limited by the inability to diagnose malignancy in follicular-patterned lesions accurately and, as a result, 20%-30% of cases under investigation for TC are classified as cytologically indeterminate, illustrating a problem with current FNAC procedure. Raman spectroscopy has shown promising results for the detection of many cancers; however, to date there has been no report on the performance of Raman spectroscopy on thyroid cytological samples. The aim of this study was to examine whether Raman spectroscopy could be used to correctly classify cell lines representing benign thyroid cells and various subtypes of TC.

Methods: A benign thyroid cell line and seven TC cell lines were prepared as ThinPrep® cytology slides and analysed with Raman spectroscopy. Principal components analysis and linear discriminant analysis were implemented to develop effective diagnostic algorithms for classification of Raman spectra of different TC subtypes.

Results: The spectral differences separating benign and TC cell lines were assigned to differences in the composition of nucleic acids, lipids, carbohydrates and protein in the benign and cancer cells. Good sensitivities (74%-85%), specificities (65%-93%) and diagnostic accuracies (71%-88%) were achieved for the identification of TC.

Conclusion: These findings suggest that Raman spectroscopy has potential for preoperative TC diagnosis on FNAC samples.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cyt.12636DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
24
cell lines
12
preoperative diagnosis
8
thyroid cancer
8
benign thyroid
8
raman
7
thyroid
6
spectroscopy
5
spectroscopy preoperative
4
diagnosis thyroid
4

Similar Publications

Stabilizing Lattice Oxygen of Bi2O3 by Interstitial Insertion of Indium for Efficient Formic Acid Electrosynthesis.

Angew Chem Int Ed Engl

January 2025

University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.

Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.

View Article and Find Full Text PDF

Phenotype and genetic spectrum of six Indian patients with bestrophinopathy.

Taiwan J Ophthalmol

December 2024

Shri Bhagwan Mahavir Vitreoretinal Services, Medical Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India.

The aim of this study is to describe genotype and phenotype of patients with bestrophinopathy. The case records were reviewed retrospectively, findings of multimodal imaging such as color fundus photograph, optical coherence tomography (OCT), fundus autofluorescence, electrophysiological, and genetic tests were noted. Twelve eyes of six patients from distinct Indian families with molecular diagnosis were enrolled.

View Article and Find Full Text PDF

We recently demonstrated molecular plasmons in cyanine dyes for the conversion of photon energy into mechanical energy through a whole-molecule coherent vibronic-driven-action. Here we present a model, a molecular plasmon analogue of molecular orbital theory and of plasmon hybridization in metal nanostructures. This model describes that molecular plasmons can be obtained from the combination or hybridization of elementary molecular fragments, resulting in molecules with hybridized plasmon resonances in the electromagnetic spectrum.

View Article and Find Full Text PDF

Semiconductor metal oxide gas sensors are widely used to detect ethanol vapours, commonly used in industrial productions, road safety detection, and solvent production; however, they operate at extremely high temperatures. In this work, we present manganese dioxide nanorods (MnO NRs) prepared via hydrothermal synthetic route, carbon soot (CNPs) prepared via pyrolysis of lighthouse candle, and poly-4-vinylpyridine (P4VP) composite for the detection of ethanol vapour at room temperature. MnO, CNPs, P4VP, and MnO NRs-CNPs-P4VP composite were characterised using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy.

View Article and Find Full Text PDF

Solar-driven CO photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized CsSbBr nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO reduction rate (45.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!