The substitution of the reverse polarity benzyldimethyl-n-hexadecylammonium chloride (16-BAC) polyacrylamide gel electrophoresis (PAGE) for isoelectric focusing (IEF) in the first dimension of electrophoresis improves the solubility of extremely hydrophobic proteins and their recovery compared to conventional 2D IEF/SDS PAGE. The acidic environment of 16-BAC PAGE has also been shown to better preserve the labile methylation of basic proteins such as the histones. Several improvements of the 2D 16-BAC/SDS PAGE method are collectively described here with particular emphasis on the separation of mitochondrial membrane proteins of low molecular mass. Lowering the 16-BAC concentration 50-fold in the gel and buffers decreases the formation of mixed 16-BAC/SDS micelles, which otherwise interferes with the separation of very low molecular mass proteins in second dimension SDS PAGE, and consequently improved the resolution of mitochondrial membrane proteins in the 10-30 kDa range.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-8814-3_3DOI Listing

Publication Analysis

Top Keywords

mitochondrial membrane
12
membrane proteins
12
polyacrylamide gel
8
gel electrophoresis
8
low molecular
8
molecular mass
8
proteins
6
two-dimensional 16-bac/sds
4
16-bac/sds polyacrylamide
4
electrophoresis mitochondrial
4

Similar Publications

Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.

View Article and Find Full Text PDF

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

[Allelopathy: chemical communication between plants].

Biol Aujourdhui

January 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

Today, weed control in agricultural systems is largely based on the use of synthetic pesticides. However, the use of these compounds is increasingly controversial among farmers and consumers, who point to their harmful properties for human health and the environment. In this context, the development of eco-friendly agricultural approaches and practices is becoming essential, and allelopathy represents a promising solution.

View Article and Find Full Text PDF

Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.

View Article and Find Full Text PDF

Potassium channels regulate membrane potential, calcium flux, cellular activation and effector functions of adaptive and innate immune cells. The voltage-activated Kv1.3 channel is an important regulator of T cell-mediated autoimmunity and microglia-mediated neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!