We have recently developed Corynebacterium glutamicum strains that produce free fatty acids in culture supernatant due to enhanced fatty acid biosynthesis. Of these producing strains, the basic producer PAS-15 has a defect in the gene for a fatty acid biosynthesis repressor protein, and the advanced producer PCC-6 has two additional mutations to augment the production by strain PAS-15. The aim of the present study was to obtain novel genetic traits for improving fatty acid production by these producers. A new mutant with increased production derived from strain PAS-15 had a missense mutation in the accD3 gene (mutation accD3), which is involved in the biosynthesis of mycolic acids that are cell envelope lipids of C. glutamicum, as the causal mutation. Mutation accD3 was verified to reduce the AccD3 enzymatic activity and increase fatty acid production in strain PAS-15 by 1.8-fold. Deletion of the accD3 gene in strain PAS-15, which was motivated by the characteristic of mutation accD3, increased fatty acid production by 3.2-fold. Susceptibility of strain PAS-15 to vancomycin was significantly increased by accD3 gene deletion and by mutation accD3 to the intermediate level, suggesting that the cell envelope permeability barrier by mycolic acids is weakened by this engineering. Furthermore, mutation accD3 also increased fatty acid production in strain PCC-6 by 1.3-fold. These increased production levels were suggested to be involved not only in the redirection of carbon flux from mycolic acid biosynthesis to fatty acid production but also in the permeability of the cell envelope.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-018-9395-5DOI Listing

Publication Analysis

Top Keywords

fatty acid
32
acid production
24
mutation accd3
24
strain pas-15
20
accd3 gene
16
acid biosynthesis
16
production strain
12
cell envelope
12
accd3
10
acid
10

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Omega-3 fatty acids: molecular weapons against chemoresistance in breast cancer.

Cell Mol Biol Lett

January 2025

Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy.

Breast cancer is the most commonly diagnosed type of cancer and the leading cause of cancer-related death in women worldwide. Highly targeted therapies have been developed for different subtypes of breast cancer, including hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, triple-negative breast cancer (TNBC) and metastatic breast cancer disease are primarily treated with chemotherapy, which improves disease-free and overall survival, but does not offer a curative solution for these aggressive forms of breast cancer.

View Article and Find Full Text PDF

Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential.

Best Pract Res Clin Rheumatol

January 2025

Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:

Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.

View Article and Find Full Text PDF

Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.

View Article and Find Full Text PDF

Effects of rumen-degradable starch on lactation performance, gastrointestinal fermentation, and plasma metabolomic in dairy cows.

Int J Biol Macromol

January 2025

State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China. Electronic address:

This study investigated the effects of rumen-degradable starch (RDS) on lactation performance, gastrointestinal fermentation, and plasma metabolomics in dairy cows. Six mid-lactation cows, fitted with rumen, duodenum, and ileum cannulas, were used in a duplicated 3 × 3 Latin square design with 28-day periods. The cows were fed a low RDS (LRDS; 62.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!