Background: Infections caused by bacteria are a foremost cause of morbidity and mortality in the world. The common strategy of treating bacterial infections is by local or systemic administration of antimicrobial agents. Currently, the increasing antibiotic resistance is a serious and global problem. Since the most important agent for infection is bacteria attaching to host cells, hence, new techniques and attractive approaches that interfere with the ability of the bacteria to adhere to tissues of the host or detach them from the tissues at the early stages of infection are good therapeutic strategies.
Methods: All available national and international databanks were searched using the search keywords. Here, we review various approaches to anti-adhesion therapy, including use of receptor and adhesion analogs, dietary constituents, sublethal concentrations of antibiotics, and adhesion-based vaccines.
Results: Altogether, the findings suggest that interference with bacterial adhesion serves as a new means to fight infectious diseases.
Conclusion: Anti-adhesion-based therapies can be effective in prevention and treatment of bacterial infections, but further work is needed to elucidate underlying mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s15010-018-1222-5 | DOI Listing |
World J Microbiol Biotechnol
January 2025
School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
Carbapenems are a class of β-lactam antibacterial drugs with a broad antibacterial spectrum and strong activity, commonly used to treat serious bacterial infections. However, improper or excessive use of carbapenems can lead to increased bacterial resistance, which is a significant concern as they are often used as last resort for treating multidrug-resistant (MDR) gram-negative bacteria. Confronted with this challenge, it is crucial to comprehensively understand the mechanism of carbapenem resistance to develop effective therapeutic strategies and innovative drugs.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, 08003, Spain.
Fish disease outbreaks caused by bacterial burdens are responsible for decreasing productivity in aquaculture. Unraveling the molecular mechanisms activated in the gonads after infections is pivotal for enhancing husbandry techniques in fish farms, ensuring disease management, and selecting the most resilience phenotype. The present study, with an important commercial species the European sea bass (Dicentrarchus labrax), an important commercial species in Europe, examined changes in the miRNome and transcriptome 48 h after an intraperitoneal infection with Vibrio anguillarum.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Center for Infectious Diseases, Lab of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
Unlabelled: Due to increasing antimicrobial resistance and side effects caused by current standard antimicrobial regimens used for treatment of prosthetic joint infection (PJI), alternative options are urgently needed. We aimed to investigate the effect of clindamycin in different exposure strategies against in an mature biofilm model. In short, 7-day biofilms were generated on polystyrene plates and titanium-aluminum-vanadium discs using a clinical PJI isolate.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.
Unlabelled: Coronaviruses have large, positive-sense single-stranded RNA genomes that challenge conventional strategies for mutagenesis. Yeast genetics has been used to manipulate large viral genomes, including those of herpesviruses and coronaviruses. This method, known as transformation-associated recombination (TAR), involves assembling complete viral genomes from dsDNA copies of viral genome fragments via homologous recombination in .
View Article and Find Full Text PDFJ Bacteriol
January 2025
Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany.
Unlabelled: is well adapted to survive and persist in the infected host, escaping the host's immune response. Since polyamines such as spermine, which are synthesized by infected macrophages, are able to inhibit the growth of , the pathogen needs strategies to cope with these toxic metabolites. The actinomycete , a close relative of makes use of a gamma-glutamylation pathway to functionally neutralize spermine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!