Precipitation changes may induce shifts in plant species or life form dominance in ecosystems, making some previously subordinate species abundant. The plasticity of certain plant functional traits of these expanding subordinate species may be one possible mechanism behind their success. In this study, we tested if the subordinate winter annual grass Secale sylvestre shows plasticity in growth and reproduction in response to altered environment associated with field-scale rainfall manipulations (severe drought, moderate drought, and watering) in a semiarid grassland, and whether the maternal environment influences offspring germination or growth in a subsequent pot experiment. Compared to control plots, S. sylvestre plants grew 38% taller, and produced 32% more seeds in severe drought plots, while plants in watered plots were 17% shorter, and had 22% less seeds. Seed mass was greatest in severe drought plots. Plants growing in drought plots had offspring with enhanced juvenile shoot growth compared to the progeny whose mother plants grew in watered plots. These responses are most likely explained by the decreased cover of previously dominant perennial grasses in severe drought plots, which resulted in wetter soil compared to control and watered plots during the peak growth of S. sylvestre. We conclude that the plasticity of this subordinate annual species in response to changing environment may help to gain dominance with recurring droughts that suppress perennial grasses. Our results highlight that exploring both within-generation and transgenerational plasticity of subordinate species may lead to a better prediction of changes in plant species dominance under climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-018-4264-6DOI Listing

Publication Analysis

Top Keywords

severe drought
16
drought plots
16
subordinate species
12
watered plots
12
within-generation transgenerational
8
transgenerational plasticity
8
plasticity growth
8
subordinate annual
8
annual grass
8
plant species
8

Similar Publications

Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.

View Article and Find Full Text PDF

Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications.

View Article and Find Full Text PDF

Drought impacts trees in varied temporal and spatial patterns, suggesting that heterogeneity of below-ground water stores influences the fate of trees under water stress. Karst ecosystems rely on shallow soil overlying bedrock that can store available water in primary pores. A contribution of rock moisture to tree water status has been previously demonstrated, but actual mechanisms and rates of rock-to-root water delivery remain unknown.

View Article and Find Full Text PDF

The impact of seasonal short-term drought on plant physiology and resilience is crucial for conservation and management strategies. This study investigated drought stress effects on growth, photosynthetic capacity, and physiological responses of Camphor (Cinnamomum camphora) seedlings in Guangxi province, China. Fertilized potted plants underwent continuous drought treatments to assess varying water supply effects.

View Article and Find Full Text PDF

The land use transition plays an important role for terrestrial environmental services, which had a mixed impact of positive and negative on the groundwater and terrestrial water resource. The health of ecological systems and groundwater depends on the mapping and management of land use. The Ganga basin is one of the most densely populated and agriculture-intensive river systems in the South Asia and the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!