Entropy images, representing the complexity of original fundus photographs, may strengthen the contrast between diabetic retinopathy (DR) lesions and unaffected areas. The aim of this study is to compare the detection performance for severe DR between original fundus photographs and entropy images by deep learning. A sample of 21,123 interpretable fundus photographs obtained from a publicly available data set was expanded to 33,000 images by rotating and flipping. All photographs were transformed into entropy images using block size 9 and downsized to a standard resolution of 100 × 100 pixels. The stages of DR are classified into 5 grades based on the International Clinical Diabetic Retinopathy Disease Severity Scale: Grade 0 (no DR), Grade 1 (mild nonproliferative DR), Grade 2 (moderate nonproliferative DR), Grade 3 (severe nonproliferative DR), and Grade 4 (proliferative DR). Of these 33,000 photographs, 30,000 images were randomly selected as the training set, and the remaining 3,000 images were used as the testing set. Both the original fundus photographs and the entropy images were used as the inputs of convolutional neural network (CNN), and the results of detecting referable DR (Grades 2-4) as the outputs from the two data sets were compared. The detection accuracy, sensitivity, and specificity of using the original fundus photographs data set were 81.80%, 68.36%, 89.87%, respectively, for the entropy images data set, and the figures significantly increased to 86.10%, 73.24%, and 93.81%, respectively (all values <0.001). The entropy image quantifies the amount of information in the fundus photograph and efficiently accelerates the generating of feature maps in the CNN. The research results draw the conclusion that transformed entropy imaging of fundus photographs can increase the machinery detection accuracy, sensitivity, and specificity of referable DR for the deep learning-based system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6151683PMC
http://dx.doi.org/10.1155/2018/2159702DOI Listing

Publication Analysis

Top Keywords

entropy images
24
fundus photographs
20
original fundus
16
photographs entropy
12
diabetic retinopathy
12
data set
12
nonproliferative grade
12
images
9
photographs
8
images deep
8

Similar Publications

An improved concrete structure health monitoring method based on G-S-G is proposed, which fully combines an optimized Gray-Level Co-occurrence Matrix (GLCM) with an improved Self-Organizing Map (SOM) neural network to achieve accurate and real-time concrete structure health monitoring. First of all, in order to obtain a dynamic image of the crack damage region of interest (ROI) with clear contrast and obvious target, the image acquisition system and image optimization method are used to process the damaged image. Moreover, in order to realize the accurate location of crack damage, crack damage identification research based on GLCM-SOM effectively eliminates the interference of honeycomb and pothole damage on crack damage.

View Article and Find Full Text PDF

Electrophysiological Signatures of Alpha Coma.

J Clin Neurophysiol

January 2025

Department of Intensive Care, Neuro-Intensive Care Unit, University Hospital of Geneva, Geneva, Switzerland.

Purpose: Recent research on quantitative EEG in coma has proposed several metrics correlating with consciousness level. However, the heterogeneous nature of coma can challenge the generalizability of these measures. This study investigates alpha-coma, an electroclinical pattern characterized by a widespread, nonreactive alpha rhythm often linked to poor outcomes.

View Article and Find Full Text PDF

Unlabelled: Juvenile myoclonic epilepsy (JME) exhibits abnormal functional connectivity of brain networks at multiple frequencies. We used the multilayer network model to address the heterogeneous features at different frequencies and assess the mechanisms of functional integration and segregation of brain networks in JME patients. To address the possibility of false edges or missing edges during network construction, we combined multilayer networks with link prediction techniques.

View Article and Find Full Text PDF

Anticounterfeiting technologies meet challenges in the Internet of Things era due to the rapidly growing volume of objects, their frequent connection with humans, and the accelerated advance of counterfeiting/cracking techniques. Here, we, inspired by biological fingerprints, present a simple anticounterfeiting system based on perovskite quantum dot (PQD) fingerprint physical unclonable function (FPUF) by cooperatively utilizing the spontaneous-phase separation of polymers and selective in situ synthesis PQDs as an entropy source. The FPUFs offer red, green, and blue full-color fingerprint identifiers and random three-dimensional (3D) morphology, which extends binary to multivalued encoding by tuning the perovskite and polymer components, enabling a high encoding capacity (about 10, far surpassing that of biometric fingerprints).

View Article and Find Full Text PDF

Deep learning-based medical image analysis has shown strong potential in disease categorization, segmentation, detection, and even prediction. However, in high-stakes and complex domains like healthcare, the opaque nature of these models makes it challenging to trust predictions, particularly in uncertain cases. This sort of uncertainty can be crucial in medical image analysis; diabetic retinopathy is an example where even slight errors without an indication of confidence can have adverse impacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!