AI Article Synopsis

  • A study updates a comprehensive genome-scale model of a fungus important for industrial enzyme and acid production by integrating data from 876 publications, which adds 940 reactions, 777 metabolites, and 454 genes to the existing model.
  • The new model, named iJB1325, allows for automated testing and includes strain-specific versions for better usability, with compliance to the SBML standard for easier simulations.
  • The findings emphasize the need to consolidate scattered experimental data into a cohesive network to enhance our understanding of metabolic processes in the organism.

Article Abstract

Background: is an important fungus used in industrial applications for enzyme and acid production. To enable rational metabolic engineering of the species, available information can be collected and integrated in a genome-scale model to devise strategies for improving its performance as a host organism.

Results: In this paper, we update an existing model of metabolism to include the information collected from 876 publications, thereby expanding the coverage of the model by 940 reactions, 777 metabolites and 454 genes. In the presented consensus genome-scale model of iJB1325 , we integrated experimental data from publications and patents, as well as our own experiments, into a consistent network. This information has been included in a standardized way, allowing for automated testing and continuous improvements in the future. This repository of experimental data allowed the definition of 471 individual test cases, of which the model complies with 373 of them. We further re-analyzed existing transcriptomics and quantitative physiology data to gain new insights on metabolism. Additionally, the model contains 3482 checks on the model structure, thereby representing the best validated genome-scale model on developed until now. Strain-specific model versions for strains ATCC 1015 and CBS 513.88 have been created containing all data used for model building, thereby allowing users to adopt the models and check the updated version against the experimental data. The resulting model is compliant with the SBML standard and therefore enables users to easily simulate it using their preferred software solution.

Conclusion: Experimental data on most organisms are scattered across hundreds of publications and several repositories.To allow for a systems level understanding of metabolism, the data must be integrated in a consistent knowledge network. The iJB1325 model presented here integrates the available data into a highly curated genome-scale model to facilitate the simulation of flux distributions, as well as the interpretation of other genome-scale data by providing the metabolic context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158834PMC
http://dx.doi.org/10.1186/s40694-018-0060-7DOI Listing

Publication Analysis

Top Keywords

genome-scale model
16
experimental data
16
model
13
data
9
data model
8
genome-scale
5
community-driven reconstruction
4
reconstruction metabolic
4
metabolic network
4
network background
4

Similar Publications

Background/objectives: Predicting the effects of protein and DNA mutations on the binding free energy of protein-DNA complexes is crucial for understanding how DNA variants impact wild-type cellular function. As many cellular interactions involve protein-DNA binding, accurately predicting changes in binding free energy (ΔΔG) is valuable for distinguishing pathogenic mutations from benign ones.

Methods: This study describes the development and optimization of the SAMPDI-3Dv2 machine learning method, which is trained on an expanded database of experimentally measured ΔΔGs.

View Article and Find Full Text PDF

During batch fermentation, a variety of compounds are synthesized, as microorganisms undergo distinct growth phases: lag, exponential, growth-no-growth transition, stationary, and decay. A detailed understanding of the metabolic pathways involved in these phases is crucial for optimizing the production of target compounds. Dynamic flux balance analysis (dFBA) offers insight into the dynamics of metabolic pathways.

View Article and Find Full Text PDF

Quantifying liver-toxic responses from dose-dependent chemical exposures using a rat genome-scale metabolic model.

Toxicol Sci

January 2025

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, 21702, USA.

Because the liver plays a vital role in the clearance of exogenous chemical compounds, it is susceptible to chemical-induced toxicity. Animal-based testing is routinely used to assess the hepatotoxic potential of chemicals. While large-scale high-throughput sequencing data can indicate the genes affected by chemical exposures, we need system-level approaches to interpret these changes.

View Article and Find Full Text PDF

Lignin, as the abundant carbon polymer, is essential for carbon cycle and biorefinery. Microorganisms interact to form communities for lignin biodegradation, yet it is a challenge to understand such complex interactions. Here, we develop a coastal lignin-degrading bacterial consortium (LD), through "top-down" enrichment.

View Article and Find Full Text PDF

Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!