Background: Infections caused by multi-drug resistant gram-negative bacterial infections are the principle threats to the critically ill patients of intensive care units. Increasing reports of these infections from the Nepalese intensive care unit underline the clinical importance of these pathogens. However, the impact of these infections on the patient's clinical outcome has not yet been clearly evaluated. The objective of our study was to determine the incidence and associated clinical outcome of multi-drug resistant gram-negative bacterial infections in intensive care unit from a tertiary care center of Nepal.

Methods: A prospective cohort study was conducted among adult patients admitted in intensive care unit of B. P Koirala Institute of Health Sciences from July to December 2017. Patients infected with multi-drug resistant gram-negative bacteria, non-multi-drug resistant gram-negative bacteria and those without infection were included. Identification of gram-negative bacteria and their antibiotic susceptibility pattern was performed with standard microbiological methods. Demographic, clinical profiles and outcomes (in-hospital-mortality, intensive care unit and hospital length of stay) were documented.

Results: The incidence rate of multi-drug resistant gram-negative bacteria infections was 47 per 100 admitted patients (64/137) with 128 episodes. (41%, 52/128) was the commonest followed by (28%, 36/128) and (21%, 27/128). Patients with multi-drug resistant gram-negative bacteria in comparison to non-multi-drug resistant gram-negative bacteria had high healthcare-associated infections (95%, 61/64 versus 20%, 2/10;  = < 0.001). In-hospital-mortality was 38% (24/64), 20% (2/10) and 10% (4/41) in multi-drug resistant, non-multi-drug resistant and uninfected group respectively ( = 0.007). After adjustment for independent risk factors, compared to uninfected patients, the odds ratio (CI) for in-hospital-mortality in multi-drug resistant and non-multi-drug resistant group was (4.7[1.4-15.5],  = 0.01) and 2.60 [0.38-17.8],  = 0.32) respectively. Multi-drug resistant patients also had longer intensive care unit and hospital stay, however, it was statistically insignificant.

Conclusion: The incidence of multi-drug resistant gram-negative bacterial infections was remarkably high in our intensive care unit and showed a significant association with healthcare-associated infections and in-hospital-mortality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158849PMC
http://dx.doi.org/10.1186/s13756-018-0404-3DOI Listing

Publication Analysis

Top Keywords

gram-negative bacteria
28
resistant gram-negative
28
intensive care
24
care unit
20
multi-drug resistant
20
gram-negative
9
infections
8
bacteria infections
8
infections intensive
8
prospective cohort
8

Similar Publications

In integrated crop-livestock systems, livestock graze on cover crops and deposit raw manure onto fields to improve soil health and fertility. However, enteric pathogens shed by grazing animals may be associated with foodborne pathogen contamination of produce influenced by fecal-soil microbial interactions. We analyzed 300 fecal samples (148 from sheep and 152 from goats) and 415 soil samples (272 from California and 143 from Minnesota) to investigate the effects of grazing and the presence of non-O157 Shiga toxin-producing Escherichia coli (STEC) or generic E.

View Article and Find Full Text PDF

Bacterial Leaf Blight (BLB) usually attacks rice in the flowering stage and can cause yield losses of up to 50% in severely infected fields. The resulting yield losses severely impact farmers, necessitating compensation from the regulatory authorities. This study introduces a new pipeline specifically designed for detecting BLB in rice fields using unmanned aerial vehicle (UAV) imagery.

View Article and Find Full Text PDF

Background: Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in .

Methods And Results: A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant .

View Article and Find Full Text PDF

Animals can use specific environmental cues to make informed decisions about whether and where to disperse. Patch conditions are known to affect the dispersal behavior of animals, but empirical studies investigating the impact of resource diversity on the dispersal of closely related species are largely lacking. In this study, we investigated how food diversity affects the dispersal behavior of three co-occurring cryptic species of the marine bacterivorous nematode complex (Pm I, Pm III and Pm IV).

View Article and Find Full Text PDF

Background: With the rising prevalence of obesity, surgeons are frequently confronted with the problem of treating osteoarthritis of the hip via arthroplasty (total hip arthroplasty) in severely obese patients. To reduce the surgical impact, minimal-invasive approaches are often chosen. For this reason, the direct anterior approach has gained popularity but is suspected of leading to more wound complications in obese patients, especially by Gram-negative pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!