Automatic epilepsy detection using fractal dimensions segmentation and GP-SVM classification.

Neuropsychiatr Dis Treat

Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic,

Published: September 2018

Objective: The most important part of signal processing for classification is feature extraction as a mapping from original input electroencephalographic (EEG) data space to new features space with the biggest class separability value. Features are not only the most important, but also the most difficult task from the classification process as they define input data and classification quality. An ideal set of features would make the classification problem trivial. This article presents novel methods of feature extraction processing and automatic epilepsy seizure classification combining machine learning methods with genetic evolution algorithms.

Methods: Classification is performed on EEG data that represent electric brain activity. At first, the signal is preprocessed with digital filtration and adaptive segmentation using fractal dimensions as the only segmentation measure. In the next step, a novel method using genetic programming (GP) combined with support vector machine (SVM) confusion matrix as fitness function weight is used to extract feature vectors compressed into lower dimension space and classify the final result into ictal or interictal epochs.

Results: The final application of GP-SVM method improves the discriminatory performance of a classifier by reducing feature dimensionality at the same time. Members of the GP tree structure represent the features themselves and their number is automatically decided by the compression function introduced in this paper. This novel method improves the overall performance of the SVM classification by dramatically reducing the size of input feature vector.

Conclusion: According to results, the accuracy of this algorithm is very high and comparable, or even superior to other automatic detection algorithms. In combination with the great efficiency, this algorithm can be used in real-time epilepsy detection applications. From the results of the algorithm's classification, we can observe high sensitivity, specificity results, except for the Generalized Tonic Clonic Seizure (GTCS). As the next step, the optimization of the compression stage and final SVM evaluation stage is in place. More data need to be obtained on GTCS to improve the overall classification score for GTCS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157576PMC
http://dx.doi.org/10.2147/NDT.S167841DOI Listing

Publication Analysis

Top Keywords

classification
10
automatic epilepsy
8
epilepsy detection
8
fractal dimensions
8
dimensions segmentation
8
feature extraction
8
eeg data
8
novel method
8
method improves
8
feature
5

Similar Publications

Histone mutations (H3 K27M, H3 G34R/V) are molecular features defining subtypes of paediatric-type diffuse high-grade gliomas (HGG) (diffuse midline glioma (DMG), H3 K27-altered, diffuse hemispheric glioma (DHG), H3 G34-mutant). The WHO classification recognises in exceptional cases, these mutations co-occur. We report one such case of a 2-year-old female presenting with neurological symptoms; MRI imaging identified a brainstem lesion which was biopsied.

View Article and Find Full Text PDF

MultiChem: predicting chemical properties using multi-view graph attention network.

BioData Min

January 2025

Department of Computer Science, Hanyang University, Seoul, Republic of Korea.

Background: Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures.

View Article and Find Full Text PDF

Mapping the landscape of Hospital at home (HaH) care: a validated taxonomy for HaH care model classification.

BMC Health Serv Res

January 2025

Institute Patient-Centered Digital Health, Bern University of Applied Sciences, Quellgasse 21, Biel, 2502, Switzerland.

Background: Hospital at home (HaH) care models have gained significant attention due to their potential to reduce healthcare costs, improve patient satisfaction, and lower readmission rates. However, the lack of a standardized classification system has hindered systematic evaluation and comparison of these models. Taxonomies serve as classification systems that simplify complexity and enhance understanding within a specific domain.

View Article and Find Full Text PDF

Background: Artcure diffusional patch (ADP) is a novel transdermal therapeutic system that started to be used in the last decade for lumbar disc herniation (LDH). Previous studies have reported early results of the therapy. In this study, we aimed to evaluate the medium- to long-term functional outcomes of this treatment in LDH patients and examine factors predicting the need for surgery after treatment.

View Article and Find Full Text PDF

Purpose: Identifying patients who may benefit from multiple drilling are crucial. Hence, the purpose of the study is to utilize radiomics and deep learning for predicting no-collapse survival in patients with femoral head osteonecrosis.

Methods: Patients who underwent multiple drilling were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!