Multidrug resistance (MDR) poses a major challenge to medicine. A principle cause of MDR is through active efflux by MDR transporters situated in the bacterial membrane. Here we present the crystal structure of the major facilitator superfamily (MFS) drug/H antiporter MdfA from Escherichia coli in an outward open conformation. Comparison with the inward facing (drug binding) state shows that, in addition to the expected change in relative orientations of the N- and C-terminal lobes of the antiporter, the conformation of TM5 is kinked and twisted. In vitro reconstitution experiments demonstrate the importance of selected residues for transport and molecular dynamics simulations are used to gain insights into antiporter switching. With the availability of structures of alternative conformational states, we anticipate that MdfA will serve as a model system for understanding drug efflux in MFS MDR antiporters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167325 | PMC |
http://dx.doi.org/10.1038/s41467-018-06306-x | DOI Listing |
J Acoust Soc Am
January 2025
Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902, USA.
A study is presented of a method for creating an acoustic flow sensor that is generally compatible with current silicon microfabrication processes. An aim of this effort is to obtain a design consisting of a minimal departure from the existing designs employed in mass-produced silicon microphones. Because the primary component in all of these microphones is the cavity behind the pressure-sensing diaphragm, we begin with a study of the acoustic particle velocity within a cavity in a planar surface.
View Article and Find Full Text PDFOpen Biol
January 2025
Rosalind Franklin Institute, Harwell Campus, Didcot, UK.
The enterobacterial common antigen (ECA) is conserved in Gram-negative bacteria of the order although its function is debated. ECA biogenesis depends on the Wzx/Wzy-dependent strategy whereby the newly synthesized lipid-linked repeat units, lipid III, are transferred across the inner membrane by the lipid III flippase WzxE. WzxE is part of the Wzx family and required in many glycan assembly systems, but an understanding of its molecular mechanism is hindered due to a lack of structural evidence.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
Background: Durazz. is one of the most popular herbs used for depression treatment, but the molecular basis for its mechanism of action has not been fully addressed. Previously, we isolated and identified two lignan glycoside derivatives that were shown to noncompetitively inhibit serotonin transporter (SERT) activity but with a relatively low inhibitory potency compared with those of conventional antidepressants.
View Article and Find Full Text PDFIn surgery for acute type A aortic dissection, controlling bleeding from the posterior wall of the proximal anastomosis is particularly challenging. To address this, we use the "reversed turn-up technique." For the reinforcement of the proximal aortic stump, Teflon felt strips were placed inside and outside the suture line with 4-0 polypropylene continuous transverse mattress sutures, and BioGlue was applied to the false lumen.
View Article and Find Full Text PDFJ Craniofac Surg
October 2024
Department of Plastic Surgery, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
High-velocity lateral impacts to the nose sometimes cause nasal buckle-out fractures with a trapdoor buckle-out segment displaced outwards. Prolonged immobilization of a reduced buckle-out segment at risk for outward redisplacement remains challenging. Here we introduce a novel method of intranasal outer cortex splinting with a Kirshner (K)-wire to reinforce the reduced state and prevent outward re-displacement of the buckle-out segment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!