The simultaneous analysis of DNAase I "footprinting" data and restriction endonucleases inhibition data was performed on the same DNA end-labelled fragment. The inhibition induced by netropsin, a number of bis-netropsins and distamycin A was investigated. These experiments led us to the following conclusions. The restriction endonucleases inhibition by the ligands is caused by the ligand molecules binding in the close vicinity to the restriction endonuclease recognition sequence. The zone of +/- 4 bp from the center of the restriction endonuclease recognition sequence can be defined as the zone of the influence of the bounded ligand on the restriction endonuclease. But in this case the intersection of recognition sequence and the binding site occupied by a single ligand molecule is not sufficient for the inhibition to occur. Restriction endonuclease cutting sites protected by netropsin can be predicted basing upon known nucleotide sequence specificity of netropsin. Netropsin and bis-netropsins show different nucleotide sequence specificity. This fact can be used for selective inhibition of restriction endonucleases.
Download full-text PDF |
Source |
---|
Curr Issues Mol Biol
December 2024
College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China.
To clone DNA sequences quickly and precisely into plasmids is essential for molecular biology studies. Some cloning vectors have been developed for the cloning of PCR products, including blunt-end and T-A cloning. However, different plasmids are required for the cloning of PCR products with blunt ends and 3' A overhang ends.
View Article and Find Full Text PDFBioTech (Basel)
December 2024
The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan.
Functionally important amino acid sequences in proteins are often located at multiple sites. Three-dimensional structural analysis and site-directed mutagenesis may be performed to allocate functional sites for understanding structure‒function relationships and for developing novel inhibitory drugs. However, such methods are too demanding to comprehensively cover potential functional sites throughout a protein chain.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Quantitative Biology Group, University of Belgrade - Faculty of Biology, Studentski trg 16, Belgrade11000, Serbia.
Type II restriction-modification (R-M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT).
View Article and Find Full Text PDFACS Nano
January 2025
Bragg Centre for Materials Research, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K.
The field of nanopore sensing is now moving beyond nucleic acid sequencing. An exciting avenue is the use of nanopore platforms for the monitoring of biochemical reactions. Biological nanopores have been used for this application, but solid-state nanopore approaches have lagged.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China. Electronic address:
Background: DNA methylation catalyzed by various DNA methyltransferases (DNA MTases) is one of the important epigenetic regulations in both eukaryotes and prokaryotes. Therefore, the detection of DNA MTase activity is a vital target and direction in the study of methylation-related diseases.
Results: In this study, an ultrasensitive and robust strategy was developed for DNA MTase activity sensing based on bifunctional probe propelling multipath strand displacement amplification and CRISPR/Cas12a techniques.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!