In addition to essential roles in protein synthesis, lysyl-tRNA synthetase (KRS) is secreted to trigger a proinflammatory function that induces macrophage activation and TNF-α secretion. KRS has been associated with autoimmune diseases such as polymyositis and dermatomyositis. In this study, we investigated the immunomodulatory effects of KRS on bone marrow-derived dendritic cells (DCs) of C57BL/6 mice and subsequent polarization of Th cells and analyzed the underlying mechanisms. KRS-treated DCs increased the expression of cell surface molecules and proinflammatory cytokines associated with DC maturation and activation. Especially, KRS treatment significantly increased production of IL-12, a Th1-polarizing cytokine, in DCs. KRS triggered the nuclear translocation of the NF-κB p65 subunit along with the degradation of IκB proteins and the phosphorylation of MAPKs in DCs. Additionally, JNK, p38, and ERK inhibitors markedly recovered the degradation of IκB proteins, suggesting the involvement of MAPKs as the upstream regulators of NF-κB in the KRS-induced DC maturation and activation. Importantly, KRS-treated DCs strongly increased the differentiation of Th1 cells when cocultured with CD4 T cells. The addition of anti-IL-12-neutralizing Ab abolished the secretion of IFN-γ in the coculture, indicating that KRS induces Th1 cell response via DC-derived IL-12. Moreover, KRS enhanced the OVA-specific Th1 cell polarization in vivo following the adoptive transfer of OVA-pulsed DCs. Taken together, these results indicated that KRS effectively induced the maturation and activation of DCs through MAPKs/NF-κB-signaling pathways and favored DC-mediated Th1 cell response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1800386 | DOI Listing |
Staphylococcus aureus prosthetic joint infections (PJIs) are broadly considered incurable, and clinical diagnostics that guide conservative vs. aggressive surgical treatments do not exist. Multi-omics studies in a humanized NSG-SGM3 BLT mouse model demonstrate human T cells: 1) are remarkably heterogenous in gene expression and numbers, and 2) exist as a mixed population of activated, progenitor-exhausted, and terminally-exhausted Th1/Th17 cells with increased expression of immune checkpoint proteins (LAG3, TIM-3).
View Article and Find Full Text PDFWhile inputs regulating CD4 T helper cell (Th) differentiation are well-defined, the integration of downstream signaling with transcriptional and epigenetic programs that define Th-lineage identity remain unresolved. PI3K signaling is a critical regulator of T cell function; activating mutations affecting PI3Kδ result in an immunodeficiency with multiple T cell defects. Using mice expressing activated-PI3Kδ, we found aberrant expression of proinflammatory Th1-signature genes under Th2-inducing conditions, both and .
View Article and Find Full Text PDFRheumatol Immunol Res
December 2024
Rheumatologis, Department of Internal Medicine, Ali Ebn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran.
Background And Objectives: Rheumatoid arthritis (RA) is a well-known systemic autoimmune inflammatory disease. This investigation aimed to assess the effects of Sina-curcumin, a novel nano micelle-based curcumin, on immune system responses of RA patients.
Methods: This pilot study is a randomized double blinded, controlled trial.
Crit Rev Oncol Hematol
January 2025
Department of Haematology, Bayero University Kano and Aminu Kano Teaching Hospital, Kano, Nigeria.
Human T-lymphotropic virus-1 (HTLV-1) induces neoplastic adult T-cell leukemia/lymphoma (ATLL) and neurological HTLV-1 associated myelopathy (HAM) in approximately 3%-5% of infected individuals. The precise factors that facilitate disease manifestation are still unknown; interaction between the virus and the host's immune response is key. Cytokines regulates physiological activities and their dysregulation may initiate the pathogenesis of various malignant and infectious diseases.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Background: The blood FGF21 expression has been previously suggested to increase in patients developing atopic dermatitis (AD) and asthma. However, its impact on atopic march is rarely analyzed. The present work focused on investigating the role of Fibroblast Growth Factor 21(FGF21) in atopic march mice and its underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!