Purpose: We evaluated the clinical benefit of tumor molecular profiling to select treatment in the phase I setting.

Experimental Design: Patients with advanced solid cancers and exhausted treatment options referred to a phase I unit were included in a prospective, single-center, single-arm open-label study (NCT02290522). Tumor biopsies were obtained for comprehensive genomic analysis including whole-exome sequencing and RNA sequencing. When possible, patients were treated with regimen matched to the genomic profile. Primary endpoint was progression-free survival (PFS).

Results: From May 2013 to January 2017, a total of 591 patients were enrolled, with 500 patients undergoing biopsy. Genomic profiles were obtained in 460 patients and a potential actionable target was identified in 352 (70%) of 500 biopsied patients. A total of 101 patients (20%) received matched treatment based on either gene mutations or RNA expression levels of targets available in early clinical trials or off-label treatment. Objective response according to RECIST1.1 was observed in 15 of 101 patients (0% complete response, 15% partial response), with a median PFS of 12 weeks (95% confidence interval, 9.9-14.4).

Conclusions: Our study supports the feasibility of genomic profiling to select patients in the phase I setting and suggests that genomic matching can be beneficial for a minor subset of patients with no other treatment options. Randomized studies may validate this assumption.See related commentary by Ratain, p. 1136.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-18-1780DOI Listing

Publication Analysis

Top Keywords

profiling select
12
patients
11
molecular profiling
8
select patients
8
patients phase
8
treatment options
8
101 patients
8
treatment
5
genomic
5
copenhagen prospective
4

Similar Publications

Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets.

View Article and Find Full Text PDF

Background: In magnetic resonance imaging (MRI) segmentation research, the choice of sequence influences the segmentation accuracy. This study introduces a method to compare sequences. By aligning sequences with specific segmentation objectives, we provide an example of a comparative analysis of various sequences for knee images.

View Article and Find Full Text PDF

Selection signatures associated with adaptation in South African Drakensberger, Nguni, and Tuli beef breeds.

Trop Anim Health Prod

December 2024

Department of Animal Science, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa.

In the present study 1,709 cattle, including 1,118 Drakensberger (DRB), 377 Nguni (NGI), and 214 Tuli (TUL), were genotyped using the GeneSeek® Genomic Profiler™ 150 K bovine SNP panel. A genomic data set of 122,632 quality-filtered single nucleotide polymorphisms (SNPs) were used to identify selection signatures within breeds based on conserved runs of homozygosity (ROH) and heterozygosity (ROHet) estimated with the detectRUNS R package. The mean number of ROH per animal varied across breeds ranging from 36.

View Article and Find Full Text PDF

In the last decades the survival of metastatic gastrointestinal (GI) cancer patients could have been significantly extended due to the introduction of targeted- and immunotherapy. However, only the minority of patients will experience long-lasting survival. Hence, novel therapeutics are clearly necessary for GI cancer patients.

View Article and Find Full Text PDF

Evaluation of Serum Lipids, Biochemical Parameters, Selected Antioxidant Elements and Oxidative Stress Profiles in Late Pregnant Jennies with Hyperlipemia.

Vet Sci

December 2024

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

Donkeys are particularly at risk of hyperlipemia. Hyperlipemia is a metabolic disease caused by the mobilization of fatty acids from adipose tissue, which often impacts pregnant and lactating jennies (female donkeys) during periods of negative energy balance. This study aimed to evaluate the levels of lipids, biochemical parameters, selected antioxidant elements and oxidative stress parameters in late pregnant jennies affected by hyperlipemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!