A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel core-shell dextran hybrid nanosystem for anti-viral drug delivery. | LitMetric

Novel core-shell dextran hybrid nanosystem for anti-viral drug delivery.

Mater Sci Eng C Mater Biol Appl

International and Inter University Centre for Nanoscience and Nanotechnology,Mahatma Gandhi University, Kottayam 686 560, Kerala, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala, India. Electronic address:

Published: December 2018

Zidovudine (AZT) is an antiviral drug extensively used for combating the global pandemic- HIV/AIDS. However, its uses are overshadowed by its short half -life, poor aqueous solubility and inability to cross physiological barriers. This study highlights a nanosystem consisting of dextran and stearic acid for AZT delivery. This hybrid nanoparticle was prepared by double emulsion solvent evaporation method. The morphological analysis of the prepared nanoparticles was carried out by transmission electron microscopy (TEM) and structural analysis through FTIR spectroscopy. Haemolysis, blood cell aggregation and cytotoxicity evaluations were also performed. These biological evaluations indicated that the nanoparticles were compatible and fluorescence microscopy studies demonstrated increased cellular internalization of drug loaded hybrid nanoparticles when compared with free drug molecules. The experimental outcomes indicate that the prepared nanoparticles are highly biocompatible haemocompatible and effective in getting internalized into cells of neural origin. These results highlight the feasibility and efficacy of the hybrid nanoparticles for effective delivery of zidovudine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.08.015DOI Listing

Publication Analysis

Top Keywords

delivery zidovudine
8
prepared nanoparticles
8
hybrid nanoparticles
8
nanoparticles
5
novel core-shell
4
core-shell dextran
4
hybrid
4
dextran hybrid
4
hybrid nanosystem
4
nanosystem anti-viral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!