Evaluation and efficacy of metal oxides in terms of antibacterial activity and toxic chemical degradation.

Mater Sci Eng C Mater Biol Appl

Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, Taiwan.

Published: December 2018

Inorganic metal oxides AgO, CuO and ZnO were examined using SEM, XRD, TGA and ICP spectroscopy to analyze their structures and physical properties in terms of resistance to germs and toxic chemicals. Zone of inhibition testing and the plate-counting method were used in this study to examine the antibacterial activities of the metal oxides against Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), and Gram-positive Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis). Furthermore, 2‑chloro‑ethyl ethyl sulfide (2‑CEES) was used to study the degradation efficacy of the metal oxides by the NMR method. The objective of the study was to develop and evaluate metal oxides that are able to protect against chemical and biological warfare agents. Excellent antibacterial and catalytic toxic chemical degradation properties were obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.08.034DOI Listing

Publication Analysis

Top Keywords

metal oxides
20
efficacy metal
8
toxic chemical
8
chemical degradation
8
metal
5
oxides
5
evaluation efficacy
4
oxides terms
4
terms antibacterial
4
antibacterial activity
4

Similar Publications

Polyoxometalates (POMs) are composed of nanometric metal-oxide anions and have rich solution chemistry. In this class, Keggin POMs have been identified as the most influential inorganic additives for aqueous nonionic soft matter systems. POMs being at the borderline of classical ions and charged colloids possess fascinating solution properties; the present work aims to delve deeper into the interactions between nanoions and nonionic soft matters from a spectroscopic point of view.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.

View Article and Find Full Text PDF

Creating coveted bioluminescence colors for simultaneous multi-color bioimaging.

Sci Adv

January 2025

Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.

Bioluminescence, an optical marker that does not require excitation by light, allows researchers to simultaneously observe multiple targets, each exhibiting a different color. Notably, the colors of the bioluminescent proteins must sufficiently vary to enable simultaneous detection. Here, we aimed to introduce a method that can be used to expand the color variation by tuning dual-acceptor bioluminescence resonance energy transfer.

View Article and Find Full Text PDF

Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.

View Article and Find Full Text PDF

The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!