We present a blue mussel exposure system where the fate of microplastics (polystyrene beads) is tracked during exposure and depuration phases. This enabled the establishment of a complete mass balance. Quantification of beads in mussels was done with a novel enzymatic digestion protocol. We found a similar relative distribution of beads for 2 environmentally realistic concentrations (5 and 100 beads L ) and no substantial egestion of particles within 2 h of depuration. Environ Toxicol Chem 2019;38:99-105. © 2018 SETAC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.4285DOI Listing

Publication Analysis

Top Keywords

fate microplastics
8
depuration phases
8
blue mussel
8
mussel exposure
8
exposure system
8
microplastics uptake
4
uptake depuration
4
phases blue
4
system blue
4
system fate
4

Similar Publications

Microplastic types dominate the effects of bismuth oxide semi-conductor nanoparticles on their transport in saturated quartz sand.

J Hazard Mater

January 2025

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China. Electronic address:

The transport of microplastics (MPs) is of great significance due to its potential threat to subsurface systems. The copresence of MPs and semi-conductor nanoparticles is quite common in practical environments (i. e.

View Article and Find Full Text PDF

Microplastics and Dechlorane Plus co-exposure amplifies their impacts on soybean plant.

Environ Pollut

January 2025

Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:

The co-existence of microplastics (MPs) and organic pollutants on agricultural ecosystems pose potential implications for both food safety and environmental integrity. The combined effects of MPs with Dechlorane Plus (DP), a newly listed banned flame retardant, remain unknown. This study explores the biological responses of soybean plants to exposure from polyethylene (PE) and polyvinyl chloride (PVC) MPs and DP.

View Article and Find Full Text PDF

Comparison of microplastics heteroaggregation with MoS and graphene oxide nanosheets: Dependence on the configuration and impacts on aquatic transport.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.

View Article and Find Full Text PDF

This is the first study to investigate the possible release of microplastic-derived dissolved organic matter (MP-DOM) in water from three major types of bio-based MPs, namely, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and PLA-PHA mixtures, under ultraviolet (UV) irradiation conditions. At an initial MP concentration of approximately 5 g per liter, the release of MP-DOM from the studied MPs ranged from 1.55 to 6.

View Article and Find Full Text PDF

The underestimated environmental risk of tris (2-chloroethyl) phosphate photodegradation in aqueous environment induced by polystyrene microplastics.

Water Res

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China. Electronic address:

Tris(2-choroethyl) phosphate (TCEP) is commonly utilized as a flame retardant and plasticizer, which inevitably coexists with polystyrene microplastics (PS-MPs) in aquatic environments. In this work, the promoting effect of pristine and aged PS-MPs on the photodegradation of TCEP was observed, and the reaction mechanisms and environmental risks of PS-MPs enhancing TCEP photodegradation were clearly revealed. The aged PS-MPs presenting more significant enhancement was attributed to more generation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!