Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Assessment of respiratory activity in pediatric intensive care unit allows a comprehensive view of the patient's condition. This allows the identification of high-risk cases for prompt and appropriate medical treatment. Numerous research works on respiration monitoring have been conducted in recent years. However, most of them are unsuitable for clinical environment or require physical contact with the patient, which limits their efficiency. In this paper, we present a novel system for measuring the breathing pattern based on a computer vision method and contactless design. Our 3D imaging system is specifically designed for pediatric intensive care environment, which distinguishes it from the other imaging methods. Indeed, previous works are mostly limited to the use of conventional video acquisition devices, in addition to not considering the constraints imposed by intensive care environment. The proposed system uses depth information captured by two (Red Green Blue-Depth) RGB-D cameras at different view angles, by considering the intensive care unit constraints. Depth information is then exploited to reconstruct a 3D surface of a patient's torso with high temporal and spatial resolution and large spatial coverage. Our system captures the motion information for the top of the torso surface as well as for its both lateral sides. For each reconstruction, the volume is estimated through a recursive subdivision of the 3D space into cubic unit elements. The volume change is then calculated through a subtraction technique between successive reconstructions. We tested our system in the pediatric intensive care unit of the Sainte-Justine university hospital center, where it was compared to the gold standard method currently used in pediatric intensive care units. The performed experiments showed a very high accuracy and precision of the proposed imaging system in estimating respiratory rate and tidal volume.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2018.09.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!