A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Utilization of centrate for the outdoor production of marine microalgae at the pilot-scale in raceway photobioreactors. | LitMetric

Utilization of centrate for the outdoor production of marine microalgae at the pilot-scale in raceway photobioreactors.

J Environ Manage

Departamento de Ingeniería Química, Universidad de Almería, Ctra. Sacramento, s/n, 04120 La Cañada de San Urbano Almería, Spain.

Published: December 2018

In this study, the outdoor production of marine microalgae in raceway photobioreactors was investigated, modifying the centrate percentage in the culture medium (20, 30, 40 and 50%) and using two different dilution rates (0.2 day and 0.3 day). The data obtained showed that microalgae are capable of producing biomass in addition to recovering the nutrients contained in the centrate. The best results for biomass productivity and light efficiency were obtained when the centrate was set at 20% with a dilution rate of 0.3 day The biomass productivity was 32.42 g m·day while the photosynthetic efficiency was 0.74 g·E (3.66%). Regarding the nutrients, nitrogen (the majority being in the form of ammonium [NH]) and phosphorus were only fixed into biomass when optimal conditions were set; if this was not the case, they were lost to stripping or precipitation. The maximal nutrient removal capacities under the optimal conditions were 28.72 mg·l·day and 3.99 mg·l·day. Population changes were determined by the dilution rate set whilst the centrate percentage had little effect. Four strains were present in the culture, Nannochloropsis g. being the main one. Biochemical changes did not vary greatly between the conditions set for the culture, with a composition rich in proteins and carbohydrates being observed. One can conclude that to produce marine microalgal biomass for a range of potential commodities such as feed, biofertilizers and biofuels, it is possible to use centrate from anaerobic digestion as the sole nutrient source, as a way of reducing costs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2018.08.020DOI Listing

Publication Analysis

Top Keywords

outdoor production
8
production marine
8
marine microalgae
8
raceway photobioreactors
8
centrate percentage
8
biomass productivity
8
dilution rate
8
optimal conditions
8
conditions set
8
centrate
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!