We systematically reviewed the currently available evidence on how the design parameters of surface nanopatterns (e.g. height, diameter, and interspacing) relate to their bactericidal behavior. The systematic search of the literature resulted in 46 studies that satisfied the inclusion criteria of examining the bactericidal behavior of nanopatterns with known design parameters in absence of antibacterial agents. Twelve of the included studies also assessed the cytocompatibility of the nanopatterns. Natural and synthetic nanopatterns with a wide range of design parameters were reported in the included studies to exhibit bactericidal behavior. However, most design parameters were in the following ranges: heights of 100-1000 nm, diameters of 10-300 nm, and interspacings of <500 nm. The most commonly used type of nanopatterns were nanopillars, which could kill bacteria in the following range of design parameters: heights of 100-900 nm, diameters of 20-207 nm, and interspacings of 9-380 nm. The vast majority of the cytocompatibility studies (11 out of 12) showed no adverse effects of bactericidal nanopatterns with the only exception being nanopatterns with extremely high aspect ratios. The paper concludes with a discussion on the evidence available in the literature regarding the killing mechanisms of nanopatterns and the effects of other parameters including surface affinity of bacteria, cell size, and extracellular polymeric substance (EPS) on the killing efficiency. STATEMENT OF SIGNIFICANCE: The use of nanopatterns to kill bacteria without the need for antibiotics represents a rapidly growing area of research. However, the optimum design parameters to maximize the bactericidal behavior of such physical features need to be fully identified. The present manuscript provides a systematic review of the bactericidal nanopatterned surfaces. Identifying the effective range of dimensions in terms of height, diameter, and interspacings, as well as covering their impact on mammalian cells, has enabled a comprehensive discussion including the bactericidal mechanisms and the factors controlling the bactericidal efficiency. Overall, this review helps the readers have a better understanding of the state-of-the-art in the design of bactericidal nanopatterns, serving as a design guideline and contributing to the design of future experimental studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2018.09.059 | DOI Listing |
Trials
January 2025
Department of Electrical and Computer Engineering, Princeton University, Princeton, 08544, NJ, USA.
Background: Phase-3 clinical trials provide the highest level of evidence on drug safety and effectiveness needed for market approval by implementing large randomized controlled trials (RCTs). However, 30-40% of these trials fail mainly because such studies have inadequate sample sizes, stemming from the inability to obtain accurate initial estimates of average treatment effect parameters.
Methods: To remove this obstacle from the drug development cycle, we present a new algorithm called Trend-Adaptive Design with a Synthetic-Intervention-Based Estimator (TAD-SIE) that powers a parallel-group trial, a standard RCT design, by leveraging a state-of-the-art hypothesis testing strategy and a novel trend-adaptive design (TAD).
BMC Anesthesiol
January 2025
Department of Anesthesiology and Reanimation, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey.
Background: Patient safety is important in daily anesthesia practices, and providing deep anesthesia is difficult. Current debates on the optimal anesthetic agents highlight the need for safer alternatives. This study was justified by the need for safer and more effective anesthetic protocols for outpatient hysteroscopic procedures, particularly those conducted outside the operating room.
View Article and Find Full Text PDFEvid Based Dent
January 2025
Division of Periodontics, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India.
Design: A triple-armed, double-blind randomized controlled trial with cross-over design investigated patient-reported satisfaction and objective dental evaluation of a 3-unit, monolithic zirconium dioxide (ZrO2), implant-supported fixed dental prosthesis (iFDP) fabricated with 2 completely digital workflows and 1 mixed analog-digital workflow.
Case Selection: Participants enrolled required rehabilitation of 2 dental implants in posterior region of either of the arches with a 3-unit, ZrO2 iFDP. A total of 20 participants received the 3 types of ZrO2, iFDP fabricated by 3 different methods.
Sci Rep
January 2025
Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber.
View Article and Find Full Text PDFSci Rep
January 2025
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
This study presents an advanced dynamic finite element (FE) model of multiple components of the breast to examine the biomechanical impact of different types of physical activities and activity intensity on the breast tissues. Using 4D scanning and motion capture technologies, dynamic data are collected during different activities. The accuracy of the FE model is verified based on relative mean absolute error (RMAE), and optimal material parameters are identified by using a validated stepwise grid search method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!