A fast and reliable protocol for activation of porcine oocytes.

Theriogenology

Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada. Electronic address:

Published: January 2019

AI Article Synopsis

  • * This study sought to create a more natural activation process by adjusting calcium and zinc levels while targeting specific proteins, leading to improved embryo development results.
  • * The new protocol (IT-20), which combines ionomycin with a zinc chelator for short periods, showed higher success rates in forming viable embryos compared to the older control method (CT-245) in both parthenogenetic and ICSI embryos.

Article Abstract

Oocyte activation is physiologically triggered by the sperm during fertilization, however, production of porcine embryos by somatic cell nuclear transfer (SCNT), intracytoplasmic sperm injection (ICSI) or parthenogenetic activation (PA) requires artificial oocyte activation. Although effective protocols for artificial oocyte activation have been developed, current protocols require long exposures to non-specific inhibitors, which do not mimic the physiological process and may have detrimental consequences for embryo development. This study attempted to mimic the physiological activation events induced by fertilization, through the manipulation of Ca and Zn levels, and protein kinase C (PKC) as well as cyclin dependent kinase 1 (CDK1) activities, with the aim of developing an improved protocol for activation of porcine oocytes. In the first experiment, matured oocytes were exposed to ionomycin (Ion) for 5 min, and then treated with a specific CDK1 inhibitor (RO-3306) and/or PKC activator (OAG) for different time intervals. The highest rate of pronuclear (PN) formation (58.8%) was obtained when oocytes were treated with PKCa + CDK1i for 4 h. Second, PN formation and embryo development were evaluated in oocytes exposed for different times to a Zn chelator (TPEN) following Ion treatment. This revealed that 15 min was the minimal exposure time to TPEN required to maximise oocyte activation and embryo development. Next, we observed that treatment with PKCa + CDK1i for 4 h after TPEN for 15 min decreased embryo development compared to TPEN alone. Lastly, we compared the efficiency of the Ion (5 min) plus TPEN (15 min) protocol (IT-20) with a control protocol used in our laboratory (CT-245) for production of PA, SCNT and ICSI embryos. In PA embryos, IT-20 resulted in higher cleavage (72% vs 49.2%) and blastocyst from cleaved embryos (65.5% vs 46.2%) compared to CT-245. In ICSI embryos, higher PN rates were obtained with the IT-20 protocol compared with CT-245 and the non-activated (N-A) group. Moreover, the two protocols were equally efficient for activation of SCNT embryos. Based on these findings, we propose that IT-20 is a fast and effective protocol for activation of porcine oocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2018.09.021DOI Listing

Publication Analysis

Top Keywords

oocyte activation
16
embryo development
16
protocol activation
12
activation porcine
12
porcine oocytes
12
activation
10
artificial oocyte
8
mimic physiological
8
oocytes exposed
8
ion 5 min
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!