A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of Multifrequency and Phase Keying Strategies for Focusing Ultrasound to the Human Vertebral Canal. | LitMetric

Focused ultrasound has been shown to increase the permeability of the blood-brain barrier and its feasibility for opening the blood-spinal cord barrier has also been demonstrated in small animal models, with great potential to impact the treatment of spinal cord (SC) disorders. For clinical translation, challenges to transvertebral focusing of ultrasound energy on the human spinal canal, such as a focal depth of field and standing-wave formation, must be addressed. A dual-aperture approach using multifrequency and phase-shift keying (PSK) strategies for achieving a controlled focus in human thoracic vertebrae was investigated through numerical simulations and benchtop experiments in ex vivo human vertebrae. An ~85% reduction in the focal depth of field was achieved compared to a single-aperture approach at 564 kHz. Short-burst (two-cycle) excitations in combination with PSK were found to suppress the formation of standing waves in ex vivo human thoracic vertebrae when focusing through the vertebral laminae. The results make an important contribution toward the development of a clinical-scale approach for targeting ultrasound therapy to the SC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6309482PMC
http://dx.doi.org/10.1109/TUFFC.2018.2872171DOI Listing

Publication Analysis

Top Keywords

focusing ultrasound
8
focal depth
8
depth field
8
human thoracic
8
thoracic vertebrae
8
vivo human
8
human
5
analysis multifrequency
4
multifrequency phase
4
phase keying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!