Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sodium chloride, NaCl, is commonly used as a proxy for sea spray aerosols. However, field work has demonstrated that sea spray aerosols also often contain a significant organic component. In this work, we examine the effect of amino acids on the hygroscopic properties of NaCl aerosols using a Fourier transform infrared spectrometer coupled to a flow-cell apparatus. It is found that the effect can be drastically different depending on the nature of the amino acid. More hydrophilic amino acids such as glycine lead to continuous hygroscopic growth of internally mixed NaCl-amino acid aerosols generated from an equimolar precursor solution. However, more hydrophobic amino acids such as alanine do not significantly alter the hygroscopicity of NaCl aerosols. The hydropathy scale is found to be a good qualitative diagnostic for the effect that an amino acid will have on the hygroscopicity of NaCl.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.8b07119 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!