Gypsum has a long history as a soil amendment. Information on how flue gas desulfurization (FGD) gypsum affects soil, water, and plant properties across a range of climates and soils is lacking. We conducted a meta-analysis using data from 10 field sites in the United States (Alabama, Arkansas, Indiana, New Mexico, North Dakota, Ohio, and Wisconsin). Each site used three rates each of mined and FGD gypsums plus an untreated control treatment. Gypsum rates included a presumed optimal agronomic rate plus one rate lower and one rate higher than the optimal. Gypsum was applied once at the beginning of each study, and then data were collected for 2 to 3 yr. The meta-analyses used response ratios () calculated by dividing the treatment value by the control value for crop yield or for each measured element in plant, soil, and vadose water. These values were tested for their significance with values. Most values varied only slightly from 1.00. Gypsum significantly changed more values from 1.00 for vadose water than for soil or crop tissue in terms of numbers of elements affected (11 for water, 7 for soil, and 8 for crop tissue). The highest value for soil was 1.57 (Ca) which was similar for both mined and FGD gypsum, for crop tissue was 1.46 (Sr) for mined gypsum, and for vadose water was 4.22 (S) for FGD gypsum. The large increase in Ca and S is often a desired response to gypsum application. Lowest values occurred in crop tissue for Mg (0.89) with FGD gypsum and for Ni (0.92 or 0.93) with both gypsums. Although some sites showed crop yield responses to gypsum, the overall mean values for mined gypsum (0.987) and for FGD gypsum (1.00) were not significantly different from 1.00 in this short-term study.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2018.04.0163DOI Listing

Publication Analysis

Top Keywords

fgd gypsum
20
vadose water
16
crop tissue
16
gypsum
13
mined fgd
8
crop yield
8
water soil
8
soil crop
8
mined gypsum
8
crop
7

Similar Publications

In this project, cement-based composites reinforced with slag powder (abbreviated as SP), steel slag powder (abbreviated as SSP), and desulfurization gypsum (abbreviated as FGD) were used as the research objects, and the preparation, mechanical properties, and strengthening mechanism of the composites were systematically studied. A laser particle analyzer (Malvern Instruments Analysis) was used to determine that the particle sizes of the raw SSP, SP, and FGD materials were concentrated between 5 and 40 μm, indicating that they were fine-grained minerals. SSP and SP are highly active alkaline substances.

View Article and Find Full Text PDF

Evaluation of the efficacy of amendment types and rates in reducing ammonia emissions from broiler litter.

Poult Sci

December 2024

Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, Alabama. Electronic address:

Several amendments have been used to reduce ammonia (NH) emissions from broiler litter (BL); however, a comparative study between amendments and their application rates has not been fully explored. This study evaluated the potential of biochar (B), zeolite (Z), Flue Gas Desulphurization-Gypsum (FGD-G), and sodium bisulfate (S) at four application rates in reducing NH emissions from BL. The treatments comprised of amendment types (4) and their application rates (4), and a control with no amendment for a total of 17 treatments replicated twice and arranged in a completely randomized design.

View Article and Find Full Text PDF

The sequestration of carbon dioxide (CO) stands as a profoundly pivotal environmental challenge, given its potential to directly contribute to the advancement of environmental, societal, and economic objectives across a multitude of nations. In the present study, we have conducted an evaluation of the metal impurity partitioning and speciation in mineral carbonation processes conducted in laboratory using flue gas desulfurization (FGD) gypsums originating from both Spanish and two Chinese coal-fired power plants, each subject to distinct fuel sources and FGD operational conditions. Of the three resultant carbonation products, two exhibited CaCO content in the range of 81-83%, while the third registered 76.

View Article and Find Full Text PDF

Saline-alkali soils have poor N storage capacity, high N loss and inadequate nutrient supply potential, which are the main limiting factors for crop yields. Vermicompost can increase organic nutrient content, improve soil structure, and enhance microbial activity and function, and the Ca in flue gas desulfurization (FGD) gypsum can replace Na and neutralize alkalinity in saline-alkali soils though chemical improvement. This study aimed to determine if vermicompost and FGD gypsum addition could improve the N storage capacity through decreasing NH volatilization and N/NO leaching from saline-alkali soils.

View Article and Find Full Text PDF

The use of waste to capture CO has been on the rise, to reduce costs and to improve the environmental footprint. Here, a flue gas desulfurization (FGD) gypsum waste is proposed, which allows us to obtain a CaCO-based solid, which should be recycled. The CO capture stage has primarily been carried out via the direct carbonation method or at high temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!