We present results for the mechanical characterization of a bisphenol-A acrylate-based polymer optical fiber (POF) manufactured using a novel light polymerization spinning (LPS) process. The particular manufacturing process allows the development of POFs having unique mechanical characteristics, which result from an exceptionally low Young's modulus. The lower Young's modulus enables optical sensors for measuring stress or pressure with improved sensitivity and potentially a higher tunable mechanical range than conventional POFs. Moreover, properties such as the storage modulus variations with respect to the temperature and humidity were studied. Fiber Bragg gratings (FBGs), were inscribed in the POF using the plane-by-plane femtosecond laser, direct-write method for selective FBG mode excitation, and were characterized for changes to temperature, pressure, and relative humidity. The response of FBGs in this LPS-POF for all the three aforementioned measurands was several times higher than that measured for conventional POFs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.43.004799DOI Listing

Publication Analysis

Top Keywords

polymer optical
8
optical fiber
8
young's modulus
8
conventional pofs
8
characterization polymer
4
fiber enhanced
4
enhanced sensing
4
sensing capabilities
4
capabilities bragg
4
bragg grating
4

Similar Publications

In situ visualization of interfacial processes at nanoscale in non-alkaline Zn-air batteries.

Nat Commun

December 2024

Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Zn-air batteries (ZABs) present high energy density and high safety but suffer from low oxygen reaction reversibility and dendrite growth at Zn electrode in alkaline electrolytes. Non-alkaline electrolytes have been considered recently for improving the interfacial processes in ZABs. However, the dynamic evolution and reaction mechanisms regulated by electrolytes at both the positive and Zn negative electrodes remain elusive.

View Article and Find Full Text PDF

Secondary nucleation is an emerging approach for synthesizing higher-order supramolecular polymers with exciting topologies. However, a detailed understanding of growth processes and the synthesis of homochiral superstructures is yet to be demonstrated. Here, we report the non-covalent synthesis of dendritic homochiral superstructures using NIR triimide dyes as building blocks via a secondary nucleation elongation process.

View Article and Find Full Text PDF

Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices.

Adv Healthc Mater

December 2024

Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.

Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed.

View Article and Find Full Text PDF

Highly Sensitive Low-Frequency Acoustic Sensor Based on Functionalized Graphene Oxide.

Small

December 2024

State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China.

Developing miniaturized low-frequency acoustic sensors with high sensitivity is crucial for diverse applications, including geological monitoring and aerospace exploration. However, the performance of low-frequency acoustic sensor is constrained by the limited mechanical robustness of traditional sensing films at nanoscale thickness. Here, a functionalized graphene oxide (GO)-based Fabry-Perot (FP) low-frequency sensor is proposed, with characteristics of compact size, resistance to electromagnetic interference high-sensitivity low minimum detectable pressure (MDP), and a high signal-to-noise ratio (SNR).

View Article and Find Full Text PDF

A comparative evaluation of commercially available short fiber-reinforced composites.

BMC Oral Health

December 2024

Department of Biomaterials Science and Turku Clinical Biomaterial Center -TCBC, Institute of Dentistry, University of Turku, Turku, Finland.

Background: Short fiber-reinforced composites (SFRCs) are restorative materials for large cavities claimed to effectively resist crack propagation. This study aimed to compare the mechanical properties and physical characteristics of five commercially available SFRCS (Alert, Fibrafill Flow, Fibrafill Dentin, everX Flow, and everX Posterior) against a conventional particulate-filled composite (PFC, Essentia Universal).

Methods: The following characteristics were evaluated in accordance with ISO standards: flexural strength and modulus and fracture toughness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!